BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 22549788)

  • 1. Serum albumin prevents protein aggregation and amyloid formation and retains chaperone-like activity in the presence of physiological ligands.
    Finn TE; Nunez AC; Sunde M; Easterbrook-Smith SB
    J Biol Chem; 2012 Jun; 287(25):21530-40. PubMed ID: 22549788
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chaperone-like features of bovine serum albumin: a comparison with alpha-crystallin.
    Marini I; Moschini R; Del Corso A; Mura U
    Cell Mol Life Sci; 2005 Dec; 62(24):3092-9. PubMed ID: 16314918
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Retention of misfolded mutant transthyretin by the chaperone BiP/GRP78 mitigates amyloidogenesis.
    Sörgjerd K; Ghafouri B; Jonsson BH; Kelly JW; Blond SY; Hammarström P
    J Mol Biol; 2006 Feb; 356(2):469-82. PubMed ID: 16376939
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bovine serum albumin prevents human hemoglobin aggregation and retains its chaperone-like activity.
    Khan S; Naeem A
    J Biomol Struct Dyn; 2024; 42(1):346-361. PubMed ID: 36974939
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Potentially amyloidogenic conformational intermediates populate the unfolding landscape of transthyretin: insights from molecular dynamics simulations.
    Rodrigues JR; Simões CJ; Silva CG; Brito RM
    Protein Sci; 2010 Feb; 19(2):202-19. PubMed ID: 19937650
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of the binding of Cu(II) and Zn(II) to transthyretin: effects on amyloid formation.
    Wilkinson-White LE; Easterbrook-Smith SB
    Biochemistry; 2007 Aug; 46(31):9123-32. PubMed ID: 17630783
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nucleobindin 1 binds to multiple types of pre-fibrillar amyloid and inhibits fibrillization.
    Bonito-Oliva A; Barbash S; Sakmar TP; Graham WV
    Sci Rep; 2017 Feb; 7():42880. PubMed ID: 28220836
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantification of anti-aggregation activity of chaperones: a test-system based on dithiothreitol-induced aggregation of bovine serum albumin.
    Borzova VA; Markossian KA; Kara DA; Chebotareva NA; Makeeva VF; Poliansky NB; Muranov KO; Kurganov BI
    PLoS One; 2013; 8(9):e74367. PubMed ID: 24058554
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanistic Insights into the Role of Molecular Chaperones in Protein Misfolding Diseases: From Molecular Recognition to Amyloid Disassembly.
    Hervás R; Oroz J
    Int J Mol Sci; 2020 Dec; 21(23):. PubMed ID: 33276458
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional Amyloid Protection in the Eye Lens: Retention of α-Crystallin Molecular Chaperone Activity after Modification into Amyloid Fibrils.
    Garvey M; Ecroyd H; Ray NJ; Gerrard JA; Carver JA
    Biomolecules; 2017 Sep; 7(3):. PubMed ID: 28895938
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydration and packing are crucial to amyloidogenesis as revealed by pressure studies on transthyretin variants that either protect or worsen amyloid disease.
    Ferrão-Gonzales AD; Palmieri L; Valory M; Silva JL; Lashuel H; Kelly JW; Foguel D
    J Mol Biol; 2003 May; 328(4):963-74. PubMed ID: 12729768
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Drug Development in Conformational Diseases: A Novel Family of Chemical Chaperones that Bind and Stabilise Several Polymorphic Amyloid Structures.
    Sablón-Carrazana M; Fernández I; Bencomo A; Lara-Martínez R; Rivera-Marrero S; Domínguez G; Pérez-Perera R; Jiménez-García LF; Altamirano-Bustamante NF; Diaz-Delgado M; Vedrenne F; Rivillas-Acevedo L; Pasten-Hidalgo K; Segura-Valdez Mde L; Islas-Andrade S; Garrido-Magaña E; Perera-Pintado A; Prats-Capote A; Rodríguez-Tanty C; Altamirano-Bustamante MM
    PLoS One; 2015; 10(9):e0135292. PubMed ID: 26327208
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanistic basis for the recognition of a misfolded protein by the molecular chaperone Hsp90.
    Oroz J; Kim JH; Chang BJ; Zweckstetter M
    Nat Struct Mol Biol; 2017 Apr; 24(4):407-413. PubMed ID: 28218749
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conserved residues modulate copper release in human copper chaperone Atox1.
    Hussain F; Olson JS; Wittung-Stafshede P
    Proc Natl Acad Sci U S A; 2008 Aug; 105(32):11158-63. PubMed ID: 18685091
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dissecting the structure, thermodynamic stability, and aggregation properties of the A25T transthyretin (A25T-TTR) variant involved in leptomeningeal amyloidosis: identifying protein partners that co-aggregate during A25T-TTR fibrillogenesis in cerebrospinal fluid.
    Azevedo EP; Pereira HM; Garratt RC; Kelly JW; Foguel D; Palhano FL
    Biochemistry; 2011 Dec; 50(51):11070-83. PubMed ID: 22091638
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Amyloid fibril formation by bovine milk kappa-casein and its inhibition by the molecular chaperones alphaS- and beta-casein.
    Thorn DC; Meehan S; Sunde M; Rekas A; Gras SL; MacPhee CE; Dobson CM; Wilson MR; Carver JA
    Biochemistry; 2005 Dec; 44(51):17027-36. PubMed ID: 16363816
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Myricetin inhibits amyloid fibril formation of globular proteins by stabilizing the native structures.
    Prajapati KP; Singh AP; Dubey K; Ansari M; Temgire M; Anand BG; Kar K
    Colloids Surf B Biointerfaces; 2020 Feb; 186():110640. PubMed ID: 31835184
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Capsaicin-Coated Silver Nanoparticles Inhibit Amyloid Fibril Formation of Serum Albumin.
    Anand BG; Dubey K; Shekhawat DS; Kar K
    Biochemistry; 2016 Jun; 55(24):3345-8. PubMed ID: 27243335
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Clusterin has chaperone-like activity similar to that of small heat shock proteins.
    Humphreys DT; Carver JA; Easterbrook-Smith SB; Wilson MR
    J Biol Chem; 1999 Mar; 274(11):6875-81. PubMed ID: 10066740
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The most pathogenic transthyretin variant, L55P, forms amyloid fibrils under acidic conditions and protofilaments under physiological conditions.
    Lashuel HA; Wurth C; Woo L; Kelly JW
    Biochemistry; 1999 Oct; 38(41):13560-73. PubMed ID: 10521263
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.