BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 22550064)

  • 21. Skeletal muscle neuronal nitric oxide synthase micro protein is reduced in people with impaired glucose homeostasis and is not normalized by exercise training.
    Bradley SJ; Kingwell BA; Canny BJ; McConell GK
    Metabolism; 2007 Oct; 56(10):1405-11. PubMed ID: 17884453
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cardiovascular responses and neurotransmitter changes during static muscle contraction following blockade of inducible nitric oxide synthase (iNOS) within the ventrolateral medulla.
    Ally A; Phattanarudee S; Kabadi S; Patel M; Maher TJ
    Brain Res; 2006 May; 1090(1):123-33. PubMed ID: 16650388
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Activation of IKKbeta by glucose is necessary and sufficient to impair insulin signaling and nitric oxide production in endothelial cells.
    Kim F; Tysseling KA; Rice J; Gallis B; Haji L; Giachelli CM; Raines EW; Corson MA; Schwartz MW
    J Mol Cell Cardiol; 2005 Aug; 39(2):327-34. PubMed ID: 15978611
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nitric oxide increases GLUT4 expression and regulates AMPK signaling in skeletal muscle.
    Lira VA; Soltow QA; Long JH; Betters JL; Sellman JE; Criswell DS
    Am J Physiol Endocrinol Metab; 2007 Oct; 293(4):E1062-8. PubMed ID: 17666490
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Does nitric oxide regulate skeletal muscle glucose uptake during exercise?
    McConell GK; Kingwell BA
    Exerc Sport Sci Rev; 2006 Jan; 34(1):36-41. PubMed ID: 16394813
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Neuronal NO-synthase as the molecular guard of myofiber stability. NO-dependent signaling pathways in the active and unloaded muscle].
    Shenkman BS; Lomonosova IuN; Nemirovskaia TL
    Usp Fiziol Nauk; 2014; 45(2):37-48. PubMed ID: 25707262
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Corticosterone suppresses insulin- and NO-stimulated muscle glucose uptake in broiler chickens (Gallus gallus domesticus).
    Zhao JP; Lin H; Jiao HC; Song ZG
    Comp Biochem Physiol C Toxicol Pharmacol; 2009 Apr; 149(3):448-54. PubMed ID: 19000934
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Impaired insulin signaling in endothelial cells reduces insulin-induced glucose uptake by skeletal muscle.
    Kubota T; Kubota N; Kumagai H; Yamaguchi S; Kozono H; Takahashi T; Inoue M; Itoh S; Takamoto I; Sasako T; Kumagai K; Kawai T; Hashimoto S; Kobayashi T; Sato M; Tokuyama K; Nishimura S; Tsunoda M; Ide T; Murakami K; Yamazaki T; Ezaki O; Kawamura K; Masuda H; Moroi M; Sugi K; Oike Y; Shimokawa H; Yanagihara N; Tsutsui M; Terauchi Y; Tobe K; Nagai R; Kamata K; Inoue K; Kodama T; Ueki K; Kadowaki T
    Cell Metab; 2011 Mar; 13(3):294-307. PubMed ID: 21356519
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The role of IL-6 in exercise-induced immune changes and metabolism.
    Steensberg A
    Exerc Immunol Rev; 2003; 9():40-7. PubMed ID: 14686093
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fine-tuning metabolism--how products of contraction regulate skeletal muscle adaptation.
    Philp A; Baar K
    Am J Physiol Endocrinol Metab; 2012 Jun; 302(11):E1313-4. PubMed ID: 22436694
    [No Abstract]   [Full Text] [Related]  

  • 31. Modulation of skeletal muscle antioxidant defense by exercise: Role of redox signaling.
    Ji LL
    Free Radic Biol Med; 2008 Jan; 44(2):142-52. PubMed ID: 18191750
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Physiology of nitric oxide in skeletal muscle.
    Stamler JS; Meissner G
    Physiol Rev; 2001 Jan; 81(1):209-237. PubMed ID: 11152758
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Regulation of mitochondrial function and energetics by reactive nitrogen oxides.
    Larsen FJ; Schiffer TA; Weitzberg E; Lundberg JO
    Free Radic Biol Med; 2012 Nov; 53(10):1919-28. PubMed ID: 22989554
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Role of nitric oxide in contraction induced glucose transport.
    Balon TW
    Adv Exp Med Biol; 1998; 441():87-95. PubMed ID: 9781316
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Muscle redox signalling pathways in exercise. Role of antioxidants.
    Mason SA; Morrison D; McConell GK; Wadley GD
    Free Radic Biol Med; 2016 Sep; 98():29-45. PubMed ID: 26912034
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Muscle mechanoreflex overactivity in hypertension: a role for centrally-derived nitric oxide.
    Smith SA; Leal AK; Murphy MN; Downey RM; Mizuno M
    Auton Neurosci; 2015 Mar; 188():58-63. PubMed ID: 25630887
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The production of reactive oxygen and nitrogen species by skeletal muscle.
    Jackson MJ; Pye D; Palomero J
    J Appl Physiol (1985); 2007 Apr; 102(4):1664-70. PubMed ID: 17082364
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Reactive oxygen species and redox-regulation of skeletal muscle adaptations to exercise.
    Jackson MJ
    Philos Trans R Soc Lond B Biol Sci; 2005 Dec; 360(1464):2285-91. PubMed ID: 16321798
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Molecular and physiologic actions of insulin related to production of nitric oxide in vascular endothelium.
    Vincent MA; Montagnani M; Quon MJ
    Curr Diab Rep; 2003 Aug; 3(4):279-88. PubMed ID: 12866989
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nitric oxide regulation of microvascular oxygen.
    Buerk DG
    Antioxid Redox Signal; 2007 Jul; 9(7):829-43. PubMed ID: 17508909
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.