BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 22550169)

  • 1. Theory of the energy transfer efficiency and fluorescence lifetime distribution in single-molecule FRET.
    Gopich IV; Szabo A
    Proc Natl Acad Sci U S A; 2012 May; 109(20):7747-52. PubMed ID: 22550169
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single-molecule FRET with diffusion and conformational dynamics.
    Gopich IV; Szabo A
    J Phys Chem B; 2007 Nov; 111(44):12925-32. PubMed ID: 17929964
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Decoding the pattern of photon colors in single-molecule FRET.
    Gopich IV; Szabo A
    J Phys Chem B; 2009 Aug; 113(31):10965-73. PubMed ID: 19588948
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection of structural dynamics by FRET: a photon distribution and fluorescence lifetime analysis of systems with multiple states.
    Kalinin S; Valeri A; Antonik M; Felekyan S; Seidel CA
    J Phys Chem B; 2010 Jun; 114(23):7983-95. PubMed ID: 20486698
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Theory of photon statistics in single-molecule Förster resonance energy transfer.
    Gopich I; Szabo A
    J Chem Phys; 2005 Jan; 122(1):14707. PubMed ID: 15638691
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-Color Single-Molecule FRET and Fluorescence Lifetime Analysis of Fast Protein Folding.
    Yoo J; Louis JM; Gopich IV; Chung HS
    J Phys Chem B; 2018 Dec; 122(49):11702-11720. PubMed ID: 30230835
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unraveling multi-state molecular dynamics in single-molecule FRET experiments. I. Theory of FRET-lines.
    Barth A; Opanasyuk O; Peulen TO; Felekyan S; Kalinin S; Sanabria H; Seidel CAM
    J Chem Phys; 2022 Apr; 156(14):141501. PubMed ID: 35428384
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of Fluorescence Lifetime and Energy Transfer Efficiency in Single-Molecule Photon Trajectories of Fast-Folding Proteins.
    Chung HS; Louis JM; Gopich IV
    J Phys Chem B; 2016 Feb; 120(4):680-99. PubMed ID: 26812046
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accurate single-pair Förster resonant energy transfer through combination of pulsed interleaved excitation, time correlated single-photon counting, and fluorescence correlation spectroscopy.
    Rüttinger S; Macdonald R; Krämer B; Koberling F; Roos M; Hildt E
    J Biomed Opt; 2006; 11(2):024012. PubMed ID: 16674202
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analyzing Förster resonance energy transfer with fluctuation algorithms.
    Felekyan S; Sanabria H; Kalinin S; Kühnemuth R; Seidel CA
    Methods Enzymol; 2013; 519():39-85. PubMed ID: 23280107
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Theory and Analysis of Single-Molecule FRET Experiments.
    Gopich IV; Chung HS
    Methods Mol Biol; 2022; 2376():247-282. PubMed ID: 34845614
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of photobleaching in single-molecule multicolor excitation and Förster resonance energy transfer measurements.
    Eggeling C; Widengren J; Brand L; Schaffer J; Felekyan S; Seidel CA
    J Phys Chem A; 2006 Mar; 110(9):2979-95. PubMed ID: 16509620
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monte Carlo Diffusion-Enhanced Photon Inference: Distance Distributions and Conformational Dynamics in Single-Molecule FRET.
    Ingargiola A; Weiss S; Lerner E
    J Phys Chem B; 2018 Dec; 122(49):11598-11615. PubMed ID: 30252475
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unraveling multi-state molecular dynamics in single-molecule FRET experiments. II. Quantitative analysis of multi-state kinetic networks.
    Opanasyuk O; Barth A; Peulen TO; Felekyan S; Kalinin S; Sanabria H; Seidel CAM
    J Chem Phys; 2022 Jul; 157(3):031501. PubMed ID: 35868918
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single-molecule photon stamping FRET spectroscopy study of enzymatic conformational dynamics.
    He Y; Lu M; Lu HP
    Phys Chem Chem Phys; 2013 Jan; 15(3):770-5. PubMed ID: 23085845
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterizing the unfolded states of proteins using single-molecule FRET spectroscopy and molecular simulations.
    Merchant KA; Best RB; Louis JM; Gopich IV; Eaton WA
    Proc Natl Acad Sci U S A; 2007 Jan; 104(5):1528-33. PubMed ID: 17251351
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative Single-Molecule Three-Color Förster Resonance Energy Transfer by Photon Distribution Analysis.
    Barth A; Voith von Voithenberg L; Lamb DC
    J Phys Chem B; 2019 Aug; 123(32):6901-6916. PubMed ID: 31117611
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extracting rate coefficients from single-molecule photon trajectories and FRET efficiency histograms for a fast-folding protein.
    Chung HS; Gopich IV; McHale K; Cellmer T; Louis JM; Eaton WA
    J Phys Chem A; 2011 Apr; 115(16):3642-56. PubMed ID: 20509636
    [TBL] [Abstract][Full Text] [Related]  

  • 19. FRET efficiency distributions of multistate single molecules.
    Gopich IV; Szabo A
    J Phys Chem B; 2010 Nov; 114(46):15221-6. PubMed ID: 21028764
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly Disordered Amyloid-β Monomer Probed by Single-Molecule FRET and MD Simulation.
    Meng F; Bellaiche MMJ; Kim JY; Zerze GH; Best RB; Chung HS
    Biophys J; 2018 Feb; 114(4):870-884. PubMed ID: 29490247
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.