BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 22550303)

  • 1. Orientation and rotational motions of single molecules by polarized total internal reflection fluorescence microscopy (polTIRFM).
    Beausang JF; Sun Y; Quinlan ME; Forkey JN; Goldman YE
    Cold Spring Harb Protoc; 2012 May; 2012(5):. PubMed ID: 22550303
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation of filamentous actin for polarized total internal reflection fluorescence microscopy (polTIRFM) motility assays.
    Beausang JF; Sun Y; Quinlan ME; Forkey JN; Goldman YE
    Cold Spring Harb Protoc; 2012 May; 2012(5):. PubMed ID: 22550306
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluorescent labeling of myosin V for polarized total internal reflection fluorescence microscopy (polTIRFM) motility assays.
    Beausang JF; Sun Y; Quinlan ME; Forkey JN; Goldman YE
    Cold Spring Harb Protoc; 2012 May; 2012(5):. PubMed ID: 22550305
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluorescent labeling of calmodulin with bifunctional rhodamine.
    Beausang JF; Sun Y; Quinlan ME; Forkey JN; Goldman YE
    Cold Spring Harb Protoc; 2012 May; 2012(5):. PubMed ID: 22550304
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The polarized total internal reflection fluorescence microscopy (polTIRFM) processive motility assay for myosin V.
    Beausang JF; Sun Y; Quinlan ME; Forkey JN; Goldman YE
    Cold Spring Harb Protoc; 2012 Jun; 2012(6):716-8. PubMed ID: 22661446
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The acquisition and analysis of polarized total internal reflection fluorescence microscopy (polTIRFM) data.
    Beausang JF; Sun Y; Quinlan ME; Forkey JN; Goldman YE
    Cold Spring Harb Protoc; 2012 Jun; 2012(6):722-5. PubMed ID: 22661430
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The polarized total internal reflection fluorescence microscopy (polTIRFM) twirling filament assay.
    Beausang JF; Sun Y; Quinlan ME; Forkey JN; Goldman YE
    Cold Spring Harb Protoc; 2012 Jun; 2012(6):719-21. PubMed ID: 22661429
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Construction of flow chambers for polarized total internal reflection fluorescence microscopy (polTIRFM) motility assays.
    Beausang JF; Sun Y; Quinlan ME; Forkey JN; Goldman YE
    Cold Spring Harb Protoc; 2012 Jun; 2012(6):712-5. PubMed ID: 22661445
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rotational motions of macro-molecules by single-molecule fluorescence microscopy.
    Rosenberg SA; Quinlan ME; Forkey JN; Goldman YE
    Acc Chem Res; 2005 Jul; 38(7):583-93. PubMed ID: 16028893
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Qdot-labeled actin super-resolution motility assay measures low-duty cycle muscle myosin step size.
    Wang Y; Ajtai K; Burghardt TP
    Biochemistry; 2013 Mar; 52(9):1611-21. PubMed ID: 23383646
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Orientation of the myosin light chain region by single molecule total internal reflection fluorescence polarization microscopy.
    Quinlan ME; Forkey JN; Goldman YE
    Biophys J; 2005 Aug; 89(2):1132-42. PubMed ID: 15894631
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dual-colour microscopy of single fluorophores bound to myosin interacting with fluorescently labelled actin using anti-Stokes fluorescence.
    Saito K; Tokunaga M; Iwane AH; Yanagida T
    J Microsc; 1997 Dec; 188(Pt 3):255-63. PubMed ID: 9450329
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural dynamics of actin during active interaction with myosin: different effects of weakly and strongly bound myosin heads.
    Prochniewicz E; Walseth TF; Thomas DD
    Biochemistry; 2004 Aug; 43(33):10642-52. PubMed ID: 15311925
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional structural dynamics of myosin V by single-molecule fluorescence polarization.
    Forkey JN; Quinlan ME; Shaw MA; Corrie JE; Goldman YE
    Nature; 2003 Mar; 422(6930):399-404. PubMed ID: 12660775
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Subdiffraction-resolution fluorescence microscopy of myosin-actin motility.
    Endesfelder U; van de Linde S; Wolter S; Sauer M; Heilemann M
    Chemphyschem; 2010 Mar; 11(4):836-40. PubMed ID: 20186905
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Myosin VI walks "wiggly" on actin with large and variable tilting.
    Sun Y; Schroeder HW; Beausang JF; Homma K; Ikebe M; Goldman YE
    Mol Cell; 2007 Dec; 28(6):954-64. PubMed ID: 18158894
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Orientation of actin filaments during motion in in vitro motility assay.
    Borejdo J; Burlacu S
    Biophys J; 1994 May; 66(5):1319-27. PubMed ID: 8061187
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Myosin-Specific Adaptations of In vitro Fluorescence Microscopy-Based Motility Assays.
    Tripathi A; Bond C; Sellers JR; Billington N; Takagi Y
    J Vis Exp; 2021 Feb; (168):. PubMed ID: 33616114
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetically encoded orientation probes for F-actin for fluorescence polarization microscopy.
    Nakai N; Sato K; Tani T; Saito K; Sato F; Terada S
    Microscopy (Oxf); 2019 Oct; 68(5):359-368. PubMed ID: 31264686
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Labeling F-actin barbed ends with rhodamine-actin in permeabilized neuronal growth cones.
    Marsick BM; Letourneau PC
    J Vis Exp; 2011 Mar; (49):. PubMed ID: 21445046
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.