These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
336 related articles for article (PubMed ID: 22550959)
1. Hyperproduction of poly(4-hydroxybutyrate) from glucose by recombinant Escherichia coli. Zhou XY; Yuan XX; Shi ZY; Meng DC; Jiang WJ; Wu LP; Chen JC; Chen GQ Microb Cell Fact; 2012 May; 11():54. PubMed ID: 22550959 [TBL] [Abstract][Full Text] [Related]
2. Production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) from unrelated carbon sources by metabolically engineered Escherichia coli. Li ZJ; Shi ZY; Jian J; Guo YY; Wu Q; Chen GQ Metab Eng; 2010 Jul; 12(4):352-9. PubMed ID: 20304089 [TBL] [Abstract][Full Text] [Related]
3. Recombinant Ralstonia eutropha engineered to utilize xylose and its use for the production of poly(3-hydroxybutyrate) from sunflower stalk hydrolysate solution. Kim HS; Oh YH; Jang YA; Kang KH; David Y; Yu JH; Song BK; Choi JI; Chang YK; Joo JC; Park SJ Microb Cell Fact; 2016 Jun; 15():95. PubMed ID: 27260327 [TBL] [Abstract][Full Text] [Related]
4. Engineering of Halomonas bluephagenesis for low cost production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) from glucose. Ye J; Hu D; Che X; Jiang X; Li T; Chen J; Zhang HM; Chen GQ Metab Eng; 2018 May; 47():143-152. PubMed ID: 29551476 [TBL] [Abstract][Full Text] [Related]
5. Heat-shock protein HspA mimics the function of phasins sensu stricto in recombinant strains of Escherichia coli accumulating polythioesters or polyhydroxyalkanoates. Tessmer N; König S; Malkus U; Reichelt R; Pötter M; Steinbüchel A Microbiology (Reading); 2007 Feb; 153(Pt 2):366-374. PubMed ID: 17259608 [TBL] [Abstract][Full Text] [Related]
6. [Construction of recombinant Escherichia coli strains producing poly (4-hydroxybutyric acid) homopolyester from glucose]. Song SS; Ma H; Gao ZX; Jia ZH; Zhang X Wei Sheng Wu Xue Bao; 2005 Jun; 45(3):382-6. PubMed ID: 15989231 [TBL] [Abstract][Full Text] [Related]
7. Engineering Escherichia coli for enhanced production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) in larger cellular space. Wang Y; Wu H; Jiang X; Chen GQ Metab Eng; 2014 Sep; 25():183-93. PubMed ID: 25088357 [TBL] [Abstract][Full Text] [Related]
8. Biosynthesis of poly(4-hydroxybutyric acid) by recombinant strains of Escherichia coli. Hein S; Söhling B; Gottschalk G; Steinbüchel A FEMS Microbiol Lett; 1997 Aug; 153(2):411-8. PubMed ID: 9271870 [TBL] [Abstract][Full Text] [Related]
9. Production of poly(3-hydroxypropionate) and poly(3-hydroxybutyrate-co-3-hydroxypropionate) from glucose by engineering Escherichia coli. Meng DC; Wang Y; Wu LP; Shen R; Chen JC; Wu Q; Chen GQ Metab Eng; 2015 May; 29():189-195. PubMed ID: 25842374 [TBL] [Abstract][Full Text] [Related]
10. Microbial production of 4-hydroxybutyrate, poly-4-hydroxybutyrate, and poly(3-hydroxybutyrate-co-4-hydroxybutyrate) by recombinant microorganisms. Zhang L; Shi ZY; Wu Q; Chen GQ Appl Microbiol Biotechnol; 2009 Oct; 84(5):909-16. PubMed ID: 19434404 [TBL] [Abstract][Full Text] [Related]
11. Poly(3-hydroxybutyrate) degradation in Ralstonia eutropha H16 is mediated stereoselectively to (S)-3-hydroxybutyryl coenzyme A (CoA) via crotonyl-CoA. Eggers J; Steinbüchel A J Bacteriol; 2013 Jul; 195(14):3213-23. PubMed ID: 23667237 [TBL] [Abstract][Full Text] [Related]
12. Impact of Ralstonia eutropha's poly(3-Hydroxybutyrate) (PHB) Depolymerases and Phasins on PHB storage in recombinant Escherichia coli. Eggers J; Steinbüchel A Appl Environ Microbiol; 2014 Dec; 80(24):7702-9. PubMed ID: 25281380 [TBL] [Abstract][Full Text] [Related]
13. Production of poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-4-hydroxybutyrate) by Ralstonia eutropha from soybean oil. Park DH; Kim BS N Biotechnol; 2011 Oct; 28(6):719-24. PubMed ID: 21333767 [TBL] [Abstract][Full Text] [Related]
14. Production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) in recombinant Escherichia coli grown on glucose. Valentin HE; Dennis D J Biotechnol; 1997 Oct; 58(1):33-8. PubMed ID: 9335177 [TBL] [Abstract][Full Text] [Related]
15. Analysis of in vivo substrate specificity of the PHA synthase from Ralstonia eutropha: formation of novel copolyesters in recombinant Escherichia coli. Antonio RV; Steinbüchel A; Rehm BH FEMS Microbiol Lett; 2000 Jan; 182(1):111-7. PubMed ID: 10612741 [TBL] [Abstract][Full Text] [Related]
16. Production and characterization of poly(3-hydroxypropionate-co-4-hydroxybutyrate) with fully controllable structures by recombinant Escherichia coli containing an engineered pathway. Meng DC; Shi ZY; Wu LP; Zhou Q; Wu Q; Chen JC; Chen GQ Metab Eng; 2012 Jul; 14(4):317-24. PubMed ID: 22561235 [TBL] [Abstract][Full Text] [Related]
17. Engineering of Serine-Deamination pathway, Entner-Doudoroff pathway and pyruvate dehydrogenase complex to improve poly(3-hydroxybutyrate) production in Escherichia coli. Zhang Y; Lin Z; Liu Q; Li Y; Wang Z; Ma H; Chen T; Zhao X Microb Cell Fact; 2014 Dec; 13():172. PubMed ID: 25510247 [TBL] [Abstract][Full Text] [Related]
18. The complex structure of polyhydroxybutyrate (PHB) granules: four orthologous and paralogous phasins occur in Ralstonia eutropha. Pötter M; Müller H; Reinecke F; Wieczorek R; Fricke F; Bowien B; Friedrich B; Steinbüchel A Microbiology (Reading); 2004 Jul; 150(Pt 7):2301-2311. PubMed ID: 15256572 [TBL] [Abstract][Full Text] [Related]
19. Metabolic engineering of Escherichia coli for biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) from glucose. Yang JE; Choi YJ; Lee SJ; Kang KH; Lee H; Oh YH; Lee SH; Park SJ; Lee SY Appl Microbiol Biotechnol; 2014 Jan; 98(1):95-104. PubMed ID: 24113828 [TBL] [Abstract][Full Text] [Related]
20. One-step fermentative production of aromatic polyesters from glucose by metabolically engineered Escherichia coli strains. Yang JE; Park SJ; Kim WJ; Kim HJ; Kim BJ; Lee H; Shin J; Lee SY Nat Commun; 2018 Jan; 9(1):79. PubMed ID: 29311546 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]