BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 22551057)

  • 1. Mineralization of gaseous acetaldehyde by electrochemically generated Co(III) in H2SO4 with wet scrubber combinatorial system.
    Govindan M; Chung SJ; Moon IS
    ACS Comb Sci; 2012 Jun; 14(6):359-65. PubMed ID: 22551057
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A single catalyst of aqueous CoIII for deodorization of mixture odor gases: a development and reaction pathway study at electro-scrubbing process.
    Govindan M; Moon IS
    J Hazard Mater; 2013 Sep; 260():1064-72. PubMed ID: 23892315
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of a biphasic electroreactor with a wet scrubbing system for the removal of gaseous benzene.
    Govindan M; Chung SJ; Moon HH; Jang JW; Moon IS
    ACS Comb Sci; 2013 Aug; 15(8):439-46. PubMed ID: 23883273
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simultaneous removing SO2 and NO by a new system containing cobalt complex.
    Zhou CQ; Deng XH; Pan ZQ
    J Environ Sci (China); 2006; 18(3):567-71. PubMed ID: 17294658
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel process for simultaneous removal of NO(x) and SO2 from simulated flue gas by using a sustainable Ag(I)/Ag(II) redox mediator.
    Raju T; Chung SJ; Moon IS
    Environ Sci Technol; 2008 Oct; 42(19):7464-9. PubMed ID: 18939587
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental aspects of combined NOx and SO2 removal from flue-gas mixture in an integrated wet scrubber-electrochemical cell system.
    Chandrasekara Pillai K; Chung SJ; Raju T; Moon IS
    Chemosphere; 2009 Jul; 76(5):657-64. PubMed ID: 19500817
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetics of gas-liquid reaction between NO and Co(NH3)6(2+).
    Long XL; Xiao WD; Yuan WK
    J Hazard Mater; 2005 Aug; 123(1-3):210-6. PubMed ID: 15869841
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pilot-scale field study for ammonia removal from lagoon biogas using an acid wet scrubber.
    Lin H; Wu X; Miller C; Zhu J; Hadlocon LJ; Manuzon R; Zhao L
    J Environ Sci Health B; 2014; 49(6):439-48. PubMed ID: 24762182
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wastewater minimization in indirect electrochemical synthesis of phenylacetaldehyde.
    Sun Z; Hu X; Zhou D
    ScientificWorldJournal; 2002 Jan; 2():48-52. PubMed ID: 12806038
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sustainable generation of homogeneous Fe(VI) oxidant for the room temperature removal of gaseous N
    Ramu AG; Muthuraman G; Silambarasan P; Shik MI
    Chemosphere; 2021 Jun; 272():129497. PubMed ID: 33460829
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selection of supported cobalt substrates in the presence of oxone for the oxidation of monuron.
    Chu W; Choy WK; Kwan CY
    J Agric Food Chem; 2007 Jul; 55(14):5708-13. PubMed ID: 17567139
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multi-Walled Carbon Nanotubes as a Catalyst for Gas-Phase Oxidation of Ethanol to Acetaldehyde.
    Wang J; Huang R; Feng Z; Liu H; Su D
    ChemSusChem; 2016 Jul; 9(14):1820-6. PubMed ID: 27282126
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cobalt complexes with pyrazole ligands as catalyst precursors for the peroxidative oxidation of cyclohexane: X-ray absorption spectroscopy studies and biological applications.
    Silva TF; Martins LM; Guedes da Silva MF; Kuznetsov ML; Fernandes AR; Silva A; Pan CJ; Lee JF; Hwang BJ; Pombeiro AJ
    Chem Asian J; 2014 Apr; 9(4):1132-43. PubMed ID: 24482364
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acetaldehyde removal using an atmospheric non-thermal plasma combined with a packed bed: role of the adsorption process.
    Klett C; Duten X; Tieng S; Touchard S; Jestin P; Hassouni K; Vega-González A
    J Hazard Mater; 2014 Aug; 279():356-64. PubMed ID: 25072139
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Decomposition of nitrotoluenes from trinitrotoluene manufacturing process by Electro-Fenton oxidation.
    Chen WS; Liang JS
    Chemosphere; 2008 Jun; 72(4):601-7. PubMed ID: 18433833
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Degradation of organic gases using ultrasonic mist generated from TiO2 suspension.
    Sekiguchi K; Noshiroya D; Handa M; Yamamoto K; Sakamoto K; Namiki N
    Chemosphere; 2010 Sep; 81(1):33-8. PubMed ID: 20705323
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cobalt mediated electro-scrubbers for the degradation of gaseous perchloroethylene.
    Escalona-Durán F; Muñoz-Morales M; Souza FL; Sáez C; Cañizares P; Martínez-Huitle CA; Rodrigo MA
    Chemosphere; 2021 Sep; 279():130525. PubMed ID: 33866102
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Shape-controlled fabrication of the porous Co3O4 nanoflower clusters for efficient catalytic oxidation of gaseous toluene.
    Yan Q; Li X; Zhao Q; Chen G
    J Hazard Mater; 2012 Mar; 209-210():385-91. PubMed ID: 22305597
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Clarification of the oxidation state of cobalt corroles in heterogeneous and homogeneous catalytic reduction of dioxygen.
    Kadish KM; Shen J; Frémond L; Chen P; El Ojaimi M; Chkounda M; Gros CP; Barbe JM; Ohkubo K; Fukuzumi S; Guilard R
    Inorg Chem; 2008 Aug; 47(15):6726-37. PubMed ID: 18582035
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nano-Ag-Nafion modified Pt electrode for oxidation of volatile organic compounds: an electrochemical study.
    Muthuraman G; Chung SJ; Moon IS
    J Nanosci Nanotechnol; 2011 Aug; 11(8):7399-403. PubMed ID: 22103205
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.