These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 22551099)

  • 1. Dynamics of four-photon photoluminescence in gold nanoantennas.
    Biagioni P; Brida D; Huang JS; Kern J; Duò L; Hecht B; Finazzi M; Cerullo G
    Nano Lett; 2012 Jun; 12(6):2941-7. PubMed ID: 22551099
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aluminum for nonlinear plasmonics: resonance-driven polarized luminescence of Al, Ag, and Au nanoantennas.
    Castro-Lopez M; Brinks D; Sapienza R; van Hulst NF
    Nano Lett; 2011 Nov; 11(11):4674-8. PubMed ID: 21970569
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasmon-modulated photoluminescence of individual gold nanostructures.
    Hu H; Duan H; Yang JK; Shen ZX
    ACS Nano; 2012 Nov; 6(11):10147-55. PubMed ID: 23072661
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonlinear photoluminescence imaging of isotropic and liquid crystalline dispersions of graphene oxide.
    Senyuk B; Behabtu N; Pacheco BG; Lee T; Ceriotti G; Tour JM; Pasquali M; Smalyukh II
    ACS Nano; 2012 Sep; 6(9):8060-6. PubMed ID: 22881340
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Facile one-pot synthesis of near-infrared luminescent gold nanoparticles for sensing copper (II).
    Tu X; Chen W; Guo X
    Nanotechnology; 2011 Mar; 22(9):095701. PubMed ID: 21258146
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Platinum plasmonic nanostructure arrays for massively parallel single-molecule detection based on enhanced fluorescence measurements.
    Saito T; Takahashi S; Obara T; Itabashi N; Imai K
    Nanotechnology; 2011 Nov; 22(44):445708. PubMed ID: 21988776
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The modulation effect of transverse, antibonding, and higher-order longitudinal modes on the two-photon photoluminescence of gold plasmonic nanoantennas.
    Chen WL; Lin FC; Lee YY; Li FC; Chang YM; Huang JS
    ACS Nano; 2014 Sep; 8(9):9053-62. PubMed ID: 25207747
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two-photon excited ultraviolet photoluminescence of zinc oxide nanorods.
    Zhu G; Xu C; Zhu J; Lu C; Cui Y; Sun X
    J Nanosci Nanotechnol; 2008 Nov; 8(11):5854-7. PubMed ID: 19198316
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Drude relaxation rate in grained gold nanoantennas.
    Chen KP; Drachev VP; Borneman JD; Kildishev AV; Shalaev VM
    Nano Lett; 2010 Mar; 10(3):916-22. PubMed ID: 20128610
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Light-induced charged and trap states in colloidal nanocrystals detected by variable pulse rate photoluminescence spectroscopy.
    Saba M; Aresti M; Quochi F; Marceddu M; Loi MA; Huang J; Talapin DV; Mura A; Bongiovanni G
    ACS Nano; 2013 Jan; 7(1):229-38. PubMed ID: 23194028
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selective excitation of individual plasmonic hotspots at the tips of single gold nanostars.
    Hrelescu C; Sau TK; Rogach AL; Jäckel F; Laurent G; Douillard L; Charra F
    Nano Lett; 2011 Feb; 11(2):402-7. PubMed ID: 21244014
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strong enhancement of the radiative decay rate of emitters by single plasmonic nanoantennas.
    Muskens OL; Giannini V; Sanchez-Gil JA; Gómez Rivas J
    Nano Lett; 2007 Sep; 7(9):2871-5. PubMed ID: 17683156
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Near-field mapping of plasmonic antennas by multiphoton absorption in poly(methyl methacrylate).
    Volpe G; Noack M; Aćimović SS; Reinhardt C; Quidant R
    Nano Lett; 2012 Sep; 12(9):4864-8. PubMed ID: 22894567
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly efficient multiphoton-absorption-induced luminescence from gold nanoparticles.
    Farrer RA; Butterfield FL; Chen VW; Fourkas JT
    Nano Lett; 2005 Jun; 5(6):1139-42. PubMed ID: 15943457
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Photoluminescence of one dimension ZnO single crystal columns array excited by different space variation direction].
    Xie PB; Zhao FL; Li YD; Gong Z; Wang HZ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2005 Jun; 25(6):848-53. PubMed ID: 16201355
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Elimination of photon quenching by a transition layer to fabricate a quenching-shield sandwich structure for 800 nm excited upconversion luminescence of Nd3+-sensitized nanoparticles.
    Zhong Y; Tian G; Gu Z; Yang Y; Gu L; Zhao Y; Ma Y; Yao J
    Adv Mater; 2014 May; 26(18):2831-7. PubMed ID: 24338994
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nonlinear photoluminescence spectrum of single gold nanostructures.
    Knittel V; Fischer MP; de Roo T; Mecking S; Leitenstorfer A; Brida D
    ACS Nano; 2015 Jan; 9(1):894-900. PubMed ID: 25548827
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Infrared optical properties of nanoantenna dimers with photochemically narrowed gaps in the 5 nm regime.
    Neubrech F; Weber D; Katzmann J; Huck C; Toma A; Di Fabrizio E; Pucci A; Härtling T
    ACS Nano; 2012 Aug; 6(8):7326-32. PubMed ID: 22804706
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plasmon emission quantum yield of single gold nanorods as a function of aspect ratio.
    Fang Y; Chang WS; Willingham B; Swanglap P; Dominguez-Medina S; Link S
    ACS Nano; 2012 Aug; 6(8):7177-84. PubMed ID: 22830934
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of surface structures on 3C-SiC nanocrystals with hydrogen and hydroxyl bonding by photoluminescence.
    Wu XL; Xiong SJ; Zhu J; Wang J; Shen JC; Chu PK
    Nano Lett; 2009 Dec; 9(12):4053-60. PubMed ID: 19894694
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.