BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

461 related articles for article (PubMed ID: 22551327)

  • 21. Wood Transcriptome Profiling Identifies Critical Pathway Genes of Secondary Wall Biosynthesis and Novel Regulators for Vascular Cambium Development in
    Kim MH; Cho JS; Jeon HW; Sangsawang K; Shim D; Choi YI; Park EJ; Lee H; Ko JH
    Genes (Basel); 2019 Sep; 10(9):. PubMed ID: 31500311
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Developmental mechanisms regulating secondary growth in woody plants.
    Groover A; Robischon M
    Curr Opin Plant Biol; 2006 Feb; 9(1):55-8. PubMed ID: 16337827
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Gall formation in clubroot-infected Arabidopsis results from an increase in existing meristematic activities of the host but is not essential for the completion of the pathogen life cycle.
    Malinowski R; Smith JA; Fleming AJ; Scholes JD; Rolfe SA
    Plant J; 2012 Jul; 71(2):226-38. PubMed ID: 22394393
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Identification of putative candidate genes for juvenile wood density in Pinus radiata.
    Li X; Wu HX; Southerton SG
    Tree Physiol; 2012 Aug; 32(8):1046-57. PubMed ID: 22826379
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The SHORT-ROOT-like gene PtSHR2B is involved in Populus phellogen activity.
    Miguel A; Milhinhos A; Novák O; Jones B; Miguel CM
    J Exp Bot; 2016 Mar; 67(5):1545-55. PubMed ID: 26709311
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Transcription factor PagMYB31 positively regulates cambium activity and negatively regulates xylem development in poplar.
    Zhang Y; Chen S; Xu L; Chu S; Yan X; Lin L; Wen J; Zheng B; Chen S; Li Q
    Plant Cell; 2024 May; 36(5):1806-1828. PubMed ID: 38339982
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Transcriptional landscape of highly lignified poplar stems at single-cell resolution.
    Chen Y; Tong S; Jiang Y; Ai F; Feng Y; Zhang J; Gong J; Qin J; Zhang Y; Zhu Y; Liu J; Ma T
    Genome Biol; 2021 Nov; 22(1):319. PubMed ID: 34809675
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Jasmonic acid to boost secondary growth in hemp hypocotyl.
    Behr M; Lutts S; Hausman JF; Guerriero G
    Planta; 2018 Oct; 248(4):1029-1036. PubMed ID: 29968063
    [TBL] [Abstract][Full Text] [Related]  

  • 29. CYCD3 D-type cyclins regulate cambial cell proliferation and secondary growth in Arabidopsis.
    Collins C; Maruthi NM; Jahn CE
    J Exp Bot; 2015 Aug; 66(15):4595-606. PubMed ID: 26022252
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mobile PEAR transcription factors integrate positional cues to prime cambial growth.
    Miyashima S; Roszak P; Sevilem I; Toyokura K; Blob B; Heo JO; Mellor N; Help-Rinta-Rahko H; Otero S; Smet W; Boekschoten M; Hooiveld G; Hashimoto K; Smetana O; Siligato R; Wallner ES; Mähönen AP; Kondo Y; Melnyk CW; Greb T; Nakajima K; Sozzani R; Bishopp A; De Rybel B; Helariutta Y
    Nature; 2019 Jan; 565(7740):490-494. PubMed ID: 30626969
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A physiological model of softwood cambial growth.
    Hölttä T; Mäkinen H; Nöjd P; Mäkelä A; Nikinmaa E
    Tree Physiol; 2010 Oct; 30(10):1235-52. PubMed ID: 20660493
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The BOP-type co-transcriptional regulator NODULE ROOT1 promotes stem secondary growth of the tropical Cannabaceae tree Parasponia andersonii.
    Shen D; Holmer R; Kulikova O; Mannapperuma C; Street NR; Yan Z; van der Maden T; Bu F; Zhang Y; Geurts R; Magne K
    Plant J; 2021 Jun; 106(5):1366-1386. PubMed ID: 33735477
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The xylem and phloem transcriptomes from secondary tissues of the Arabidopsis root-hypocotyl.
    Zhao C; Craig JC; Petzold HE; Dickerman AW; Beers EP
    Plant Physiol; 2005 Jun; 138(2):803-18. PubMed ID: 15923329
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Transcriptional regulation of secondary growth and wood formation.
    Du J; Groover A
    J Integr Plant Biol; 2010 Jan; 52(1):17-27. PubMed ID: 20074137
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The rise and evolution of the cambial variant in Bignonieae (Bignoniaceae).
    Pace MR; Lohmann LG; Angyalossy V
    Evol Dev; 2009; 11(5):465-79. PubMed ID: 19754704
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Secondary development in the stem: when Arabidopsis and trees are closer than it seems.
    Barra-Jiménez A; Ragni L
    Curr Opin Plant Biol; 2017 Feb; 35():145-151. PubMed ID: 28013083
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Overexpression of two cambium-abundant Chinese fir (Cunninghamia lanceolata) α-expansin genes ClEXPA1 and ClEXPA2 affect growth and development in transgenic tobacco and increase the amount of cellulose in stem cell walls.
    Wang G; Gao Y; Wang J; Yang L; Song R; Li X; Shi J
    Plant Biotechnol J; 2011 May; 9(4):486-502. PubMed ID: 20955182
    [TBL] [Abstract][Full Text] [Related]  

  • 38. ELIMÄKI Locus Is Required for Vertical Proprioceptive Response in Birch Trees.
    Alonso-Serra J; Shi X; Peaucelle A; Rastas P; Bourdon M; Immanen J; Takahashi J; Koivula H; Eswaran G; Muranen S; Help H; Smolander OP; Su C; Safronov O; Gerber L; Salojärvi J; Hagqvist R; Mähönen AP; Helariutta Y; Nieminen K
    Curr Biol; 2020 Feb; 30(4):589-599.e5. PubMed ID: 32004453
    [TBL] [Abstract][Full Text] [Related]  

  • 39. WUSCHEL-RELATED HOMEOBOX4 (WOX4)-like genes regulate cambial cell division activity and secondary growth in Populus trees.
    Kucukoglu M; Nilsson J; Zheng B; Chaabouni S; Nilsson O
    New Phytol; 2017 Jul; 215(2):642-657. PubMed ID: 28609015
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Towards optimizing wood development in bioenergy trees.
    Nieminen K; Robischon M; Immanen J; Helariutta Y
    New Phytol; 2012 Apr; 194(1):46-53. PubMed ID: 22474686
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 24.