These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
247 related articles for article (PubMed ID: 22551392)
21. Crystal structure of the nitrosuccinate lyase CreD in complex with fumarate provides insights into the catalytic mechanism for nitrous acid elimination. Katsuyama Y; Sato Y; Sugai Y; Higashiyama Y; Senda M; Senda T; Ohnishi Y FEBS J; 2018 Apr; 285(8):1540-1555. PubMed ID: 29505698 [TBL] [Abstract][Full Text] [Related]
22. Catalytic mechanisms and biocatalytic applications of aspartate and methylaspartate ammonia lyases. de Villiers M; Puthan Veetil V; Raj H; de Villiers J; Poelarends GJ ACS Chem Biol; 2012 Oct; 7(10):1618-28. PubMed ID: 22834890 [TBL] [Abstract][Full Text] [Related]
23. Structure of Escherichia coli tryptophanase. Ku SY; Yip P; Howell PL Acta Crystallogr D Biol Crystallogr; 2006 Jul; 62(Pt 7):814-23. PubMed ID: 16790938 [TBL] [Abstract][Full Text] [Related]
24. Catalytic role for arginine 188 in the C-C hydrolase catalytic mechanism for Escherichia coli MhpC and Burkholderia xenovorans LB400 BphD. Li C; Li JJ; Montgomery MG; Wood SP; Bugg TD Biochemistry; 2006 Oct; 45(41):12470-9. PubMed ID: 17029402 [TBL] [Abstract][Full Text] [Related]
25. Gln212, Asn270, and Arg301 are critical for catalysis by adenylosuccinate lyase from Bacillus subtilis. Segall ML; Colman RF Biochemistry; 2004 Jun; 43(23):7391-402. PubMed ID: 15182182 [TBL] [Abstract][Full Text] [Related]
26. Cloning and over-expression of thermostable Bacillus sp. YM55-1 aspartase and site-directed mutagenesis for probing a catalytic residue. Kawata Y; Tamura K; Kawamura M; Ikei K; Mizobata T; Nagai J; Fujita M; Yano S; Tokushige M; Yumoto N Eur J Biochem; 2000 Mar; 267(6):1847-57. PubMed ID: 10712618 [TBL] [Abstract][Full Text] [Related]
27. Structural studies of duck delta2 crystallin mutants provide insight into the role of Thr161 and the 280s loop in catalysis. Sampaleanu LM; Codding PW; Lobsanov YD; Tsai M; Smith GD; Horvatin C; Howell PL Biochem J; 2004 Dec; 384(Pt 2):437-47. PubMed ID: 15320872 [TBL] [Abstract][Full Text] [Related]
28. Structure and function of 2,3-dimethylmalate lyase, a PEP mutase/isocitrate lyase superfamily member. Narayanan B; Niu W; Joosten HJ; Li Z; Kuipers RK; Schaap PJ; Dunaway-Mariano D; Herzberg O J Mol Biol; 2009 Feb; 386(2):486-503. PubMed ID: 19133276 [TBL] [Abstract][Full Text] [Related]
29. Evolution of enzymatic activity in the enolase superfamily: structural and mutagenic studies of the mechanism of the reaction catalyzed by o-succinylbenzoate synthase from Escherichia coli. Klenchin VA; Taylor Ringia EA; Gerlt JA; Rayment I Biochemistry; 2003 Dec; 42(49):14427-33. PubMed ID: 14661953 [TBL] [Abstract][Full Text] [Related]
30. Structural studies on M. tuberculosis argininosuccinate lyase and its liganded complex: Insights into catalytic mechanism. Paul A; Mishra A; Surolia A; Vijayan M IUBMB Life; 2019 May; 71(5):643-652. PubMed ID: 30615268 [TBL] [Abstract][Full Text] [Related]
31. Structural insight into substrate binding and catalysis of a novel 2-keto-3-deoxy-D-arabinonate dehydratase illustrates common mechanistic features of the FAH superfamily. Brouns SJ; Barends TR; Worm P; Akerboom J; Turnbull AP; Salmon L; van der Oost J J Mol Biol; 2008 May; 379(2):357-71. PubMed ID: 18448118 [TBL] [Abstract][Full Text] [Related]
32. Dissecting the roles of a strictly conserved tyrosine in substrate recognition and catalysis by pseudouridine 55 synthase. Phannachet K; Elias Y; Huang RH Biochemistry; 2005 Nov; 44(47):15488-94. PubMed ID: 16300397 [TBL] [Abstract][Full Text] [Related]
33. The structure of adenylosuccinate lyase, an enzyme with dual activity in the de novo purine biosynthetic pathway. Toth EA; Yeates TO Structure; 2000 Feb; 8(2):163-74. PubMed ID: 10673438 [TBL] [Abstract][Full Text] [Related]
34. Molecular evolution from argininosuccinate lyase to delta-crystallin. Mori M; Matsubasa T; Amaya Y; Takiguchi M Prog Clin Biol Res; 1990; 344():683-99. PubMed ID: 2203059 [TBL] [Abstract][Full Text] [Related]
35. A duck delta1 crystallin double loop mutant provides insight into residues important for argininosuccinate lyase activity. Tsai M; Sampaleanu LM; Greene C; Creagh L; Haynes C; Howell PL Biochemistry; 2004 Sep; 43(37):11672-82. PubMed ID: 15362851 [TBL] [Abstract][Full Text] [Related]
36. 3-Carboxy-cis,cis-muconate lactonizing enzyme from Pseudomonas putida is homologous to the class II fumarase family: a new reaction in the evolution of a mechanistic motif. Williams SE; Woolridge EM; Ransom SC; Landro JA; Babbitt PC; Kozarich JW Biochemistry; 1992 Oct; 31(40):9768-76. PubMed ID: 1390752 [TBL] [Abstract][Full Text] [Related]
37. Alteration of substrate specificity of aspartase by directed evolution. Asano Y; Kira I; Yokozeki K Biomol Eng; 2005 Jun; 22(1-3):95-101. PubMed ID: 15857789 [TBL] [Abstract][Full Text] [Related]
38. The X-ray structure of N-methyltryptophan oxidase reveals the structural determinants of substrate specificity. Ilari A; Bonamore A; Franceschini S; Fiorillo A; Boffi A; Colotti G Proteins; 2008 Jun; 71(4):2065-75. PubMed ID: 18186483 [TBL] [Abstract][Full Text] [Related]
39. Enhancement of catalytic activity by gene truncation: activation of L-aspartase from Escherichia coli. Jayasekera MM; Saribaş AS; Viola RE Biochem Biophys Res Commun; 1997 Sep; 238(2):411-4. PubMed ID: 9299522 [TBL] [Abstract][Full Text] [Related]
40. Elucidation of the substrate specificity, kinetic and catalytic mechanism of adenylosuccinate lyase from Plasmodium falciparum. Bulusu V; Srinivasan B; Bopanna MP; Balaram H Biochim Biophys Acta; 2009 Apr; 1794(4):642-54. PubMed ID: 19111634 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]