BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 22551687)

  • 1. RLS adaptive filtering for physiological interference reduction in NIRS brain activity measurement: a Monte Carlo study.
    Zhang Y; Sun JW; Rolfe P
    Physiol Meas; 2012 Jun; 33(6):925-42. PubMed ID: 22551687
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Scalp and skull influence on near infrared photon propagation in the Colin27 brain template.
    Strangman GE; Zhang Q; Li Z
    Neuroimage; 2014 Jan; 85 Pt 1():136-49. PubMed ID: 23660029
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physiological interference reduction for near infrared spectroscopy brain activity measurement based on recursive least squares adaptive filtering and least squares support vector machines.
    Liu X; Zhang Y; Liu D; Wang Q; Bai O; Sun J; Rolfe P
    Comput Assist Surg (Abingdon); 2019 Oct; 24(sup1):160-166. PubMed ID: 30689430
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evoked Hemodynamic Response Estimation to Auditory Stimulus Using Recursive Least Squares Adaptive Filtering with Multidistance Measurement of Near-Infrared Spectroscopy.
    Zhang Y; Liu X; Liu D; Yang C; Wang Q; Sun J; Wang K
    J Healthc Eng; 2018; 2018():7609713. PubMed ID: 29796235
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Motion artifact removal for functional near infrared spectroscopy: a comparison of methods.
    Robertson FC; Douglas TS; Meintjes EM
    IEEE Trans Biomed Eng; 2010 Jun; 57(6):1377-87. PubMed ID: 20172809
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adaptive filtering for global interference cancellation and real-time recovery of evoked brain activity: a Monte Carlo simulation study.
    Zhang Q; Brown EN; Strangman GE
    J Biomed Opt; 2007; 12(4):044014. PubMed ID: 17867818
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monte Carlo study of global interference cancellation by multidistance measurement of near-infrared spectroscopy.
    Umeyama S; Yamada T
    J Biomed Opt; 2009; 14(6):064025. PubMed ID: 20059263
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Motion artifact cancellation in NIR spectroscopy using Wiener filtering.
    Izzetoglu M; Devaraj A; Bunce S; Onaral B
    IEEE Trans Biomed Eng; 2005 May; 52(5):934-8. PubMed ID: 15887543
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evoked hemodynamic response estimation using ensemble empirical mode decomposition based adaptive algorithm applied to dual channel functional near infrared spectroscopy (fNIRS).
    Hemmati Berivanlou N; Setarehdan SK; Ahmadi Noubari H
    J Neurosci Methods; 2014 Mar; 224():13-25. PubMed ID: 24365048
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multidistance probe arrangement to eliminate artifacts in functional near-infrared spectroscopy.
    Yamada T; Umeyama S; Matsuda K
    J Biomed Opt; 2009; 14(6):064034. PubMed ID: 20059272
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Short separation channel location impacts the performance of short channel regression in NIRS.
    Gagnon L; Cooper RJ; Yücel MA; Perdue KL; Greve DN; Boas DA
    Neuroimage; 2012 Feb; 59(3):2518-28. PubMed ID: 21945793
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reduction of global interference of scalp-hemodynamics in functional near-infrared spectroscopy using short distance probes.
    Sato T; Nambu I; Takeda K; Aihara T; Yamashita O; Isogaya Y; Inoue Y; Otaka Y; Wada Y; Kawato M; Sato MA; Osu R
    Neuroimage; 2016 Nov; 141():120-132. PubMed ID: 27374729
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of task-evoked systemic interference in fNIRS measurements: insights from fMRI.
    Erdoğan SB; Yücel MA; Akın A
    Neuroimage; 2014 Feb; 87():490-504. PubMed ID: 24148922
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Motion artifact cancellation in NIR spectroscopy using discrete Kalman filtering.
    Izzetoglu M; Chitrapu P; Bunce S; Onaral B
    Biomed Eng Online; 2010 Mar; 9():16. PubMed ID: 20214809
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two-detector Corrected Near Infrared Spectroscopy (C-NIRS) detects hemodynamic activation responses more robustly than single-detector NIRS.
    Saager RB; Telleri NL; Berger AJ
    Neuroimage; 2011 Apr; 55(4):1679-85. PubMed ID: 21256223
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Further improvement in reducing superficial contamination in NIRS using double short separation measurements.
    Gagnon L; Yücel MA; Boas DA; Cooper RJ
    Neuroimage; 2014 Jan; 85 Pt 1(0 1):127-35. PubMed ID: 23403181
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Near-infrared light propagation in an adult head model. II. Effect of superficial tissue thickness on the sensitivity of the near-infrared spectroscopy signal.
    Okada E; Delpy DT
    Appl Opt; 2003 Jun; 42(16):2915-22. PubMed ID: 12790440
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The accuracy of near infrared spectroscopy and imaging during focal changes in cerebral hemodynamics.
    Boas DA; Gaudette T; Strangman G; Cheng X; Marota JJ; Mandeville JB
    Neuroimage; 2001 Jan; 13(1):76-90. PubMed ID: 11133311
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Patient-oriented simulation based on Monte Carlo algorithm by using MRI data.
    Chuang CC; Lee YT; Chen CM; Hsieh YS; Liu TC; Sun CW
    Biomed Eng Online; 2012 Apr; 11():21. PubMed ID: 22510474
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measurement of the optical properties of a two-layer model of the human head using broadband near-infrared spectroscopy.
    Pucci O; Toronov V; St Lawrence K
    Appl Opt; 2010 Nov; 49(32):6324-32. PubMed ID: 21068864
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.