BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 22552792)

  • 1. Opposing effects of nitric oxide and prostaglandin inhibition on muscle mitochondrial Vo(2) during exercise.
    Boushel R; Fuentes T; Hellsten Y; Saltin B
    Am J Physiol Regul Integr Comp Physiol; 2012 Jul; 303(1):R94-100. PubMed ID: 22552792
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Skeletal muscle blood flow and oxygen uptake at rest and during exercise in humans: a pet study with nitric oxide and cyclooxygenase inhibition.
    Heinonen I; Saltin B; Kemppainen J; Sipilä HT; Oikonen V; Nuutila P; Knuuti J; Kalliokoski K; Hellsten Y
    Am J Physiol Heart Circ Physiol; 2011 Apr; 300(4):H1510-7. PubMed ID: 21257921
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition of nitric oxide and prostaglandins, but not endothelial-derived hyperpolarizing factors, reduces blood flow and aerobic energy turnover in the exercising human leg.
    Mortensen SP; González-Alonso J; Damsgaard R; Saltin B; Hellsten Y
    J Physiol; 2007 Jun; 581(Pt 2):853-61. PubMed ID: 17347273
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Augmented skeletal muscle hyperaemia during hypoxic exercise in humans is blunted by combined inhibition of nitric oxide and vasodilating prostaglandins.
    Crecelius AR; Kirby BS; Voyles WF; Dinenno FA
    J Physiol; 2011 Jul; 589(Pt 14):3671-83. PubMed ID: 21624968
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ATP-induced vasodilation and purinergic receptors in the human leg: roles of nitric oxide, prostaglandins, and adenosine.
    Mortensen SP; González-Alonso J; Bune LT; Saltin B; Pilegaard H; Hellsten Y
    Am J Physiol Regul Integr Comp Physiol; 2009 Apr; 296(4):R1140-8. PubMed ID: 19118095
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low blood flow at onset of moderate-intensity exercise does not limit muscle oxygen uptake.
    Nyberg M; Mortensen SP; Saltin B; Hellsten Y; Bangsbo J
    Am J Physiol Regul Integr Comp Physiol; 2010 Mar; 298(3):R843-8. PubMed ID: 20089709
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of nitric oxide synthase inhibition with and without inhibition of prostaglandins on blood flow in different human skeletal muscles.
    Heinonen I; Saltin B; Hellsten Y; Kalliokoski KK
    Eur J Appl Physiol; 2017 Jun; 117(6):1175-1180. PubMed ID: 28432421
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NG-monomethyl-L-arginine inhibits the blood flow but not the insulin-like response of forearm muscle to IGF- I: possible role of nitric oxide in muscle protein synthesis.
    Fryburg DA
    J Clin Invest; 1996 Mar; 97(5):1319-28. PubMed ID: 8636445
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adenosine contributes to blood flow regulation in the exercising human leg by increasing prostaglandin and nitric oxide formation.
    Mortensen SP; Nyberg M; Thaning P; Saltin B; Hellsten Y
    Hypertension; 2009 Jun; 53(6):993-9. PubMed ID: 19433775
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Leg oxygen uptake in the initial phase of intense exercise is slowed by a marked reduction in oxygen delivery.
    Christensen PM; Nyberg M; Mortensen SP; Nielsen JJ; Secher NH; Damsgaard R; Hellsten Y; Bangsbo J
    Am J Physiol Regul Integr Comp Physiol; 2013 Aug; 305(3):R313-21. PubMed ID: 23720134
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cytochrome P450 2C9 plays an important role in the regulation of exercise-induced skeletal muscle blood flow and oxygen uptake in humans.
    Hillig T; Krustrup P; Fleming I; Osada T; Saltin B; Hellsten Y
    J Physiol; 2003 Jan; 546(Pt 1):307-14. PubMed ID: 12509498
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of nitric oxide in skeletal muscle blood flow at rest and during dynamic exercise in humans.
    Hickner RC; Fisher JS; Ehsani AA; Kohrt WM
    Am J Physiol; 1997 Jul; 273(1 Pt 2):H405-10. PubMed ID: 9249515
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nitric oxide exerts feedback inhibition on EDHF-induced coronary arteriolar dilation in vivo.
    Nishikawa Y; Stepp DW; Chilian WM
    Am J Physiol Heart Circ Physiol; 2000 Aug; 279(2):H459-65. PubMed ID: 10924042
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of nitric oxide synthase inhibition and endothelin ETA receptor blockade on haemodynamics in hypertensive rats.
    Granstam SO; Lind L; Granstam E; Fellström B
    Clin Exp Pharmacol Physiol; 1998 Sep; 25(9):693-701. PubMed ID: 9750958
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of indomethacin and L-NMMA on vascular tone and angiotensin II-induced vasoconstriction in the human forearm.
    Baan J; Chang PC; Vermeij P; Pfaffendorf M; van Zwieten PA
    Blood Press; 1997 Sep; 6(5):279-85. PubMed ID: 9359998
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combined inhibition of nitric oxide and prostaglandins reduces human skeletal muscle blood flow during exercise.
    Boushel R; Langberg H; Gemmer C; Olesen J; Crameri R; Scheede C; Sander M; Kjaer M
    J Physiol; 2002 Sep; 543(Pt 2):691-8. PubMed ID: 12205200
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nitric oxide synthase inhibition reduces leg glucose uptake but not blood flow during dynamic exercise in humans.
    Bradley SJ; Kingwell BA; McConell GK
    Diabetes; 1999 Sep; 48(9):1815-21. PubMed ID: 10480613
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prostaglandins are involved in acetylcholine- and 5-hydroxytryptamine-induced, nitric oxide-mediated vasodilatation in human forearm.
    Kamper AM; Paul LC; Blauw GJ
    J Cardiovasc Pharmacol; 2002 Dec; 40(6):922-9. PubMed ID: 12451326
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxygen consumption in the kidney: effects of nitric oxide synthase isoforms and angiotensin II.
    Deng A; Miracle CM; Suarez JM; Lortie M; Satriano J; Thomson SC; Munger KA; Blantz RC
    Kidney Int; 2005 Aug; 68(2):723-30. PubMed ID: 16014049
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Role of nitric oxide and mitochondrial permeability pore in changes of oxygen consumption in the working skeletal muscle].
    Sahach VF; Bohuslavs'kyĭ AIu; Dmytriieva AV; Nadtochiĭ SM
    Fiziol Zh (1994); 2004; 50(2):19-26. PubMed ID: 15174202
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.