These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 22552899)

  • 1. Air-drying kinetics affect yeast membrane organization and survival.
    Lemetais G; Dupont S; Beney L; Gervais P
    Appl Microbiol Biotechnol; 2012 Oct; 96(2):471-80. PubMed ID: 22552899
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lateral reorganization of plasma membrane is involved in the yeast resistance to severe dehydration.
    Dupont S; Beney L; Ritt JF; Lherminier J; Gervais P
    Biochim Biophys Acta; 2010 May; 1798(5):975-85. PubMed ID: 20116363
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nature of sterols affects plasma membrane behavior and yeast survival during dehydration.
    Dupont S; Beney L; Ferreira T; Gervais P
    Biochim Biophys Acta; 2011 Jun; 1808(6):1520-8. PubMed ID: 21081111
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Air drying optimization of Saccharomyces cerevisiae through its water-glycerol dehydration properties.
    Mille Y; Girard JP; Beney L; Gervais P
    J Appl Microbiol; 2005; 99(2):376-82. PubMed ID: 16033469
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New drying process for lactic bacteria based on their dehydration behavior in liquid medium.
    Mille Y; Obert JP; Beney L; Gervais P
    Biotechnol Bioeng; 2004 Oct; 88(1):71-6. PubMed ID: 15389487
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolomic charactetization of yeast cells after dehydration stress.
    López-Martínez G; Borrull A; Poblet M; Roy NR; Cordero-Otero R
    Int Microbiol; 2014 Sep; 17(3):131-9. PubMed ID: 26419452
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of water activity and protective solutes on growth and subsequent survival to air-drying of Lactobacillus and Bifidobacterium cultures.
    Champagne CP; Raymond Y; Simon JP
    Appl Microbiol Biotechnol; 2012 Aug; 95(3):745-56. PubMed ID: 22350318
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Yeast survival during thermal and osmotic shocks is related to membrane phase change.
    Guyot S; Ferret E; Gervais P
    J Agric Food Chem; 2006 Nov; 54(22):8450-5. PubMed ID: 17061820
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification by phenotypic and genetic approaches of an indigenous Saccharomyces cerevisiae wine strain with high desiccation tolerance.
    Zambuto M; Romaniello R; Guaragnella N; Romano P; Votta S; Capece A
    Yeast; 2017 Oct; 34(10):417-426. PubMed ID: 28732117
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anhydrobiosis in yeast: influence of calcium and magnesium ions on yeast resistance to dehydration-rehydration.
    Trofimova Y; Walker G; Rapoport A
    FEMS Microbiol Lett; 2010 Jul; 308(1):55-61. PubMed ID: 20487021
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sip18 hydrophilin prevents yeast cell death during desiccation stress.
    Rodríguez-Porrata B; Carmona-Gutierrez D; Reisenbichler A; Bauer M; Lopez G; Escoté X; Mas A; Madeo F; Cordero-Otero R
    J Appl Microbiol; 2012 Mar; 112(3):512-25. PubMed ID: 22181064
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative study of Saccharomyces cerevisiae wine strains to identify potential marker genes correlated to desiccation stress tolerance.
    Capece A; Votta S; Guaragnella N; Zambuto M; Romaniello R; Romano P
    FEMS Yeast Res; 2016 May; 16(3):. PubMed ID: 26882930
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A compensatory increase in trehalose synthesis in response to desiccation stress in Saccharomyces cerevisiae cells lacking the heat shock protein Hsp12p.
    Shamrock VJ; Lindsey GG
    Can J Microbiol; 2008 Jul; 54(7):559-68. PubMed ID: 18641702
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of two hydrophilins that contribute to the desiccation and freezing tolerance of yeast (Saccharomyces cerevisiae) cells.
    Dang NX; Hincha DK
    Cryobiology; 2011 Jun; 62(3):188-93. PubMed ID: 21420397
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcriptional response of Saccharomyces cerevisiae to desiccation and rehydration.
    Singh J; Kumar D; Ramakrishnan N; Singhal V; Jervis J; Garst JF; Slaughter SM; DeSantis AM; Potts M; Helm RF
    Appl Environ Microbiol; 2005 Dec; 71(12):8752-63. PubMed ID: 16332871
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A rapid method to determine the stress status of Saccharomyces cerevisiae by monitoring the expression of a Hsp12:green fluorescent protein (GFP) construct under the control of the Hsp12 promoter.
    Karreman RJ; Lindsey GG
    J Biomol Screen; 2005 Apr; 10(3):253-9. PubMed ID: 15809321
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Desiccation response of mammalian cells: anhydrosignaling.
    Huang Z; Tunnacliffe A
    Methods Enzymol; 2007; 428():269-77. PubMed ID: 17875423
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Osmotic mass transfer in the yeast Saccharomyces cerevisiae.
    Gervais P; Beney L
    Cell Mol Biol (Noisy-le-grand); 2001 Jul; 47(5):831-9. PubMed ID: 11728097
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of air drying on bacterial viability: A multiparameter viability assessment.
    Nocker A; Fernández PS; Montijn R; Schuren F
    J Microbiol Methods; 2012 Aug; 90(2):86-95. PubMed ID: 22575714
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anhydrobiosis in yeast: is it possible to reach anhydrobiosis for yeast grown in conditions with severe oxygen limitation?
    Rozenfelde L; Rapoport A
    Antonie Van Leeuwenhoek; 2014 Aug; 106(2):211-7. PubMed ID: 24791685
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.