These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 22553148)

  • 1. Electrostatically self-assembled nonconjugated polyelectrolytes as an ideal interfacial layer for inverted polymer solar cells.
    Kang H; Hong S; Lee J; Lee K
    Adv Mater; 2012 Jun; 24(22):3005-9, 2938. PubMed ID: 22553148
    [No Abstract]   [Full Text] [Related]  

  • 2. High-performance inverted polymer solar cells with solution-processed titanium chelate as electron-collecting layer on ITO electrode.
    Tan Z; Zhang W; Zhang Z; Qian D; Huang Y; Hou J; Li Y
    Adv Mater; 2012 Mar; 24(11):1476-81. PubMed ID: 22407842
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interlayer for modified cathode in highly efficient inverted ITO-free organic solar cells.
    Tang Z; Andersson LM; George Z; Vandewal K; Tvingstedt K; Heriksson P; Kroon R; Andersson MR; Inganäs O
    Adv Mater; 2012 Jan; 24(4):554-8. PubMed ID: 22250035
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-assembly of interfacial and photoactive layers via one-step solution processing for efficient inverted organic solar cells.
    Kang H; Lee J; Jung S; Yu K; Kwon S; Hong S; Kee S; Lee S; Kim D; Lee K
    Nanoscale; 2013 Dec; 5(23):11587-91. PubMed ID: 24121410
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Retention of power conversion efficiency--from small area to large area polymer solar cells.
    Das AJ; Narayan KS
    Adv Mater; 2013 Apr; 25(15):2193-9. PubMed ID: 23355271
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of solution-processed V2O5 in inverted polymer solar cells based on fluorine-doped tin oxide substrate.
    Wu J; Zhang Y; He Y; Liu C; Guolt W; Ruan S
    J Nanosci Nanotechnol; 2014 Jun; 14(6):4214-7. PubMed ID: 24738373
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient dye-sensitized solar cells based on hydroquinone/benzoquinone as a bioinspired redox couple.
    Cheng M; Yang X; Zhang F; Zhao J; Sun L
    Angew Chem Int Ed Engl; 2012 Sep; 51(39):9896-9. PubMed ID: 22952034
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient, air-stable bulk heterojunction polymer solar cells using MoO(x) as the anode interfacial layer.
    Sun Y; Takacs CJ; Cowan SR; Seo JH; Gong X; Roy A; Heeger AJ
    Adv Mater; 2011 May; 23(19):2226-30. PubMed ID: 21469222
    [No Abstract]   [Full Text] [Related]  

  • 9. Ultraflexible polymer solar cells using amorphous zinc-indium-tin oxide transparent electrodes.
    Zhou N; Buchholz DB; Zhu G; Yu X; Lin H; Facchetti A; Marks TJ; Chang RP
    Adv Mater; 2014 Feb; 26(7):1098-104. PubMed ID: 24123578
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Energy level alignment and sub-bandgap charge generation in polymer:fullerene bulk heterojunction solar cells.
    Tsang SW; Chen S; So F
    Adv Mater; 2013 May; 25(17):2434-9. PubMed ID: 23418056
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrathin, high-efficiency, broad-band, omni-acceptance, organic solar cells enhanced by plasmonic cavity with subwavelength hole array.
    Chou SY; Ding W
    Opt Express; 2013 Jan; 21 Suppl 1():A60-76. PubMed ID: 23389276
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In situ electrochemical deposition and doping of C60 films applied to high-performance inverted organic photovoltaics.
    Gu C; Zhang Z; Sun S; Pan Y; Zhong C; Lv Y; Li M; Ariga K; Huang F; Ma Y
    Adv Mater; 2012 Nov; 24(42):5727-31. PubMed ID: 22976046
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In situ gelation of electrolytes for highly efficient gel-state dye-sensitized solar cells.
    Chen CL; Teng H; Lee YL
    Adv Mater; 2011 Sep; 23(36):4199-204. PubMed ID: 21823177
    [No Abstract]   [Full Text] [Related]  

  • 14. A hyperbranched conjugated polymer as the cathode interlayer for high-performance polymer solar cells.
    Lv M; Li S; Jasieniak JJ; Hou J; Zhu J; Tan Z; Watkins SE; Li Y; Chen X
    Adv Mater; 2013 Dec; 25(47):6889-94. PubMed ID: 24123199
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conductive conjugated polyelectrolyte as hole-transporting layer for organic bulk heterojunction solar cells.
    Zhou H; Zhang Y; Mai CK; Collins SD; Nguyen TQ; Bazan GC; Heeger AJ
    Adv Mater; 2014 Feb; 26(5):780-5. PubMed ID: 24170587
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced performance and stability of polymer BHJ photovoltaic devices from dry transfer of PEDOT:PSS.
    Kim JK; Park I; Kim W; Wang DH; Choi DG; Choi YS; Park JH
    ChemSusChem; 2014 Jul; 7(7):1957-63. PubMed ID: 24989323
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent advances in polymer solar cells: realization of high device performance by incorporating water/alcohol-soluble conjugated polymers as electrode buffer layer.
    He Z; Wu H; Cao Y
    Adv Mater; 2014 Feb; 26(7):1006-24. PubMed ID: 24338677
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Nonconjugated Zwitterionic Polymer: Cathode Interfacial Layer Comparable with PFN for Narrow-Bandgap Polymer Solar Cells.
    Li Z; Chen Q; Liu Y; Ding L; Zhang K; Zhu K; Yuan L; Dong B; Zhou Y; Song B
    Macromol Rapid Commun; 2018 Jul; 39(14):e1700828. PubMed ID: 30117644
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metal oxide nanoparticles as an electron-transport layer in high-performance and stable inverted polymer solar cells.
    You J; Chen CC; Dou L; Murase S; Duan HS; Hawks SA; Xu T; Son HJ; Yu L; Li G; Yang Y
    Adv Mater; 2012 Oct; 24(38):5267-72. PubMed ID: 22833348
    [No Abstract]   [Full Text] [Related]  

  • 20. Performance Enhancement of Polymer Solar Cells by Using Two Polymer Donors with Complementary Absorption Spectra.
    Lu H; Zhang X; Li C; Wei H; Liu Q; Li W; Bo Z
    Macromol Rapid Commun; 2015 Jul; 36(14):1348-53. PubMed ID: 25959873
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.