These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 22553182)

  • 1. Nasopharyngeal oxygen with intermittent nose-close and abdomen-compression: a novel resuscitation technique in a piglet model.
    Soong WJ; Jeng MJ; Lee YS; Tsao PC; Soong YH
    Pediatr Pulmonol; 2013 Mar; 48(3):288-94. PubMed ID: 22553182
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [An experimental study on the effects of rhythmic abdominal lifting and compression during cardiopulmonary resuscitation in a swine model of asphyxia].
    Li XM; Wang LX; Liu YH; Sun K; Ma LZ; Guo XD; Li HQ
    Zhongguo Wei Zhong Bing Ji Jiu Yi Xue; 2012 Apr; 24(4):237-40. PubMed ID: 22464579
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanical ventilation during cardiopulmonary resuscitation with intermittent positive-pressure ventilation, bilevel ventilation, or chest compression synchronized ventilation in a pig model.
    Kill C; Hahn O; Dietz F; Neuhaus C; Schwarz S; Mahling R; Wallot P; Jerrentrup A; Steinfeldt T; Wulf H; Dersch W
    Crit Care Med; 2014 Feb; 42(2):e89-95. PubMed ID: 24158168
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A randomized comparison of cardiocerebral and cardiopulmonary resuscitation using a swine model of prolonged ventricular fibrillation.
    Mader TJ; Kellogg AR; Walterscheid JK; Lodding CC; Sherman LD
    Resuscitation; 2010 May; 81(5):596-602. PubMed ID: 20176434
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hemodynamic and respiratory effects of negative tracheal pressure during CPR in pigs.
    Yannopoulos D; Aufderheide TP; McKnite S; Kotsifas K; Charris R; Nadkarni V; Lurie KG
    Resuscitation; 2006 Jun; 69(3):487-94. PubMed ID: 16678959
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cardiopulmonary resuscitation with chest compressions during sustained inflations: a new technique of neonatal resuscitation that improves recovery and survival in a neonatal porcine model.
    Schmölzer GM; O'Reilly M; Labossiere J; Lee TF; Cowan S; Qin S; Bigam DL; Cheung PY
    Circulation; 2013 Dec; 128(23):2495-503. PubMed ID: 24088527
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 2005 American Heart Association (AHA) guidelines for cardiopulmonary resuscitation (CPR) and emergency cardiovascular care (ECC) of pediatric and neonatal patients: pediatric basic life support.
    American Heart Association
    Pediatrics; 2006 May; 117(5):e989-1004. PubMed ID: 16651298
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chest Compressions during Sustained Inflations Improve Recovery When Compared to a 3:1 Compression:Ventilation Ratio during Cardiopulmonary Resuscitation in a Neonatal Porcine Model of Asphyxia.
    Li ES; Görens I; Cheung PY; Lee TF; Lu M; O'Reilly M; Schmölzer GM
    Neonatology; 2017; 112(4):337-346. PubMed ID: 28768280
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of a 10-breaths-per-minute versus a 2-breaths-per-minute strategy during cardiopulmonary resuscitation in a porcine model of cardiac arrest.
    Lurie KG; Yannopoulos D; McKnite SH; Herman ML; Idris AH; Nadkarni VM; Tang W; Gabrielli A; Barnes TA; Metzger AK
    Respir Care; 2008 Jul; 53(7):862-70. PubMed ID: 18593487
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel technique of non-invasive ventilation: Pharyngeal oxygen with nose-closure and abdominal-compression--Aid for pediatric flexible bronchoscopy.
    Soong WJ; Jeng MJ; Lee YS; Tsao PC; Harloff M; Matthew Soong YH
    Pediatr Pulmonol; 2015 Jun; 50(6):568-75. PubMed ID: 24616304
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Positive end-expiratory pressure improves survival in a rodent model of cardiopulmonary resuscitation using high-dose epinephrine.
    McCaul C; Kornecki A; Engelberts D; McNamara P; Kavanagh BP
    Anesth Analg; 2009 Oct; 109(4):1202-8. PubMed ID: 19762750
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Resuscitation of severely asphyctic newborn pigs with cardiac arrest by using 21% or 100% oxygen.
    Solevåg AL; Dannevig I; Nakstad B; Saugstad OD
    Neonatology; 2010 Jun; 98(1):64-72. PubMed ID: 20068361
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A ventilation technique for oxygenation and carbon dioxide elimination in CPR: Continuous insufflation of oxygen at three levels of pressure in a pig model.
    Ordelman SC; Aelen P; Woerlee PH; van Berkom PF; Scheffer GJ; Noordergraaf GJ
    Resuscitation; 2015 Dec; 97():103-8. PubMed ID: 26423768
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxygen requirement during cardiopulmonary resuscitation (CPR) to effect return of spontaneous circulation.
    Yeh ST; Cawley RJ; Aune SE; Angelos MG
    Resuscitation; 2009 Aug; 80(8):951-5. PubMed ID: 19520479
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of rescue breathing during cardiopulmonary resuscitation on lung function after restoration of spontaneous circulation in a porcine model of prolonged cardiac arrest.
    Wang S; Wu JY; Guo ZJ; Li CS
    Crit Care Med; 2013 Jan; 41(1):102-10. PubMed ID: 23269128
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new device producing manual sternal compression with thoracic constraint for cardiopulmonary resuscitation.
    Niemann JT; Rosborough JP; Kassabian L; Salami B
    Resuscitation; 2006 May; 69(2):295-301. PubMed ID: 16457933
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [A new method of cardiopulmonary resuscitation executed by rhythmic abdominal lifting and compression].
    Wang LX; Zheng JC
    Zhongguo Wei Zhong Bing Ji Jiu Yi Xue; 2009 Jun; 21(6):323-4. PubMed ID: 19570333
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The use of pressure-controlled mechanical ventilation in a swine model of intraoperative pediatric cardiac arrest.
    Lapid FM; O'Brien CE; Kudchadkar SR; Lee JK; Hunt EA; Koehler RC; Shaffner DH
    Paediatr Anaesth; 2020 Apr; 30(4):462-468. PubMed ID: 31900987
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Brain tissue oxygen pressure and cerebral metabolism in an animal model of cardiac arrest and cardiopulmonary resuscitation.
    Cavus E; Bein B; Dörges V; Stadlbauer KH; Wenzel V; Steinfath M; Hanss R; Scholz J
    Resuscitation; 2006 Oct; 71(1):97-106. PubMed ID: 16942830
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reducing ventilation frequency during cardiopulmonary resuscitation in a porcine model of cardiac arrest.
    Yannopoulos D; Tang W; Roussos C; Aufderheide TP; Idris AH; Lurie KG
    Respir Care; 2005 May; 50(5):628-35. PubMed ID: 15871757
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.