These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 22553751)

  • 1. Comparison of the therapeutic effects of extracts from Spirulina platensis and amnion membrane on inflammation-associated corneal neovascularization.
    Yang LL; Zhou QJ; Wang Y; Gao Y; Wang YQ
    Int J Ophthalmol; 2012; 5(1):32-7. PubMed ID: 22553751
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibitory effects of polysaccharide extract from Spirulina platensis on corneal neovascularization.
    Yang L; Wang Y; Zhou Q; Chen P; Wang Y; Wang Y; Liu T; Xie L
    Mol Vis; 2009 Sep; 15():1951-61. PubMed ID: 19784394
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of genome-wide gene expression in suture- and alkali burn-induced murine corneal neovascularization.
    Jia C; Zhu W; Ren S; Xi H; Li S; Wang Y
    Mol Vis; 2011; 17():2386-99. PubMed ID: 21921991
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibitory effect of canstatin in alkali burn-induced corneal neovascularization.
    Wang Y; Yin H; Chen P; Xie L; Wang Y
    Ophthalmic Res; 2011; 46(2):66-72. PubMed ID: 21242701
    [TBL] [Abstract][Full Text] [Related]  

  • 5. S100A proteins in the pathogenesis of experimental corneal neovascularization.
    Li C; Zhang F; Wang Y
    Mol Vis; 2010 Oct; 16():2225-35. PubMed ID: 21139687
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Serum amyloid A and pairing formyl peptide receptor 2 are expressed in corneas and involved in inflammation-mediated neovascularization.
    Ren SW; Qi X; Jia CK; Wang YQ
    Int J Ophthalmol; 2014; 7(2):187-93. PubMed ID: 24790856
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibitory effects of the platelet-activating factor receptor antagonists, CV-3988 and Ginkgolide B, on alkali burn-induced corneal neovascularization.
    Lee CM; Jung WK; Na G; Lee DS; Park SG; Seo SK; Yang JW; Yea SS; Lee YM; Park WS; Choi IW
    Cutan Ocul Toxicol; 2015 Mar; 34(1):53-60. PubMed ID: 24754407
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Suppression of alkali-induced oxidative injury in the cornea by mesenchymal stem cells growing on nanofiber scaffolds and transferred onto the damaged corneal surface.
    Cejkova J; Trosan P; Cejka C; Lencova A; Zajicova A; Javorkova E; Kubinova S; Sykova E; Holan V
    Exp Eye Res; 2013 Nov; 116():312-23. PubMed ID: 24145108
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Immunostimulatory Effects of Polysaccharides from
    Wu X; Liu Z; Liu Y; Yang Y; Shi F; Cheong KL; Teng B
    Mar Drugs; 2020 Oct; 18(11):. PubMed ID: 33126624
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A cellular and proteomic approach to assess proteins extracted from cryopreserved human amnion in the cultivation of corneal stromal keratocytes for stromal cell therapy.
    Fenner BJ; Yusoff NZBM; Fuest M; Zhou L; Bandeira F; Cajucom-Uy HY; Tan HK; Mehta JS; Yam GHF
    Eye Vis (Lond); 2019; 6():30. PubMed ID: 31632999
    [TBL] [Abstract][Full Text] [Related]  

  • 11. αA-crystallin in the pathogenesis and intervention of experimental murine corneal neovascularization.
    Zhu W; Qi X; Ren S; Jia C; Song Z; Wang Y
    Exp Eye Res; 2012 May; 98():44-51. PubMed ID: 22465406
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of pirfenidone in alkali burn rat cornea.
    Jiang N; Ma M; Li Y; Su T; Zhou XZ; Ye L; Yuan Q; Zhu P; Min Y; Shi W; Xu X; Lv J; Shao Y
    Int Immunopharmacol; 2018 Nov; 64():78-85. PubMed ID: 30153530
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Netrin-1 simultaneously suppresses corneal inflammation and neovascularization.
    Han Y; Shao Y; Lin Z; Qu YL; Wang H; Zhou Y; Chen W; Chen Y; Chen WL; Hu FR; Li W; Liu Z
    Invest Ophthalmol Vis Sci; 2012 Mar; 53(3):1285-95. PubMed ID: 22323486
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protective roles of the TIR/BB-loop mimetic AS-1 in alkali-induced corneal neovascularization by inhibiting ERK phosphorylation.
    Liu Y; Shu Y; Yin L; Xie T; Zou J; Zhan P; Wang Y; Wei T; Zhu L; Yang X; Wang W; Cai J; Li Y; Yao Y; Wang X
    Exp Eye Res; 2021 Jun; 207():108568. PubMed ID: 33839112
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Melatonin exerts anti-angiogenic and anti-inflammatory effects in alkali-burned corneas.
    Meng J; Lin B; Huang S; Li Y; Wu P; Zhang F; Ke Y; Hei X; Huang D
    Ann Transl Med; 2022 Apr; 10(8):432. PubMed ID: 35571431
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protective Effect of
    Morsy MA; Gupta S; Nair AB; Venugopala KN; Greish K; El-Daly M
    Nutrients; 2019 Sep; 11(10):. PubMed ID: 31569451
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plasminogen kringle 5 inhibits alkali-burn-induced corneal neovascularization.
    Zhang Z; Ma JX; Gao G; Li C; Luo L; Zhang M; Yang W; Jiang A; Kuang W; Xu L; Chen J; Liu Z
    Invest Ophthalmol Vis Sci; 2005 Nov; 46(11):4062-71. PubMed ID: 16249481
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Laquinimod Inhibits Inflammation-Induced Angiogenesis in the Cornea.
    Li Z; Chen J; Lei L; Jiang N; Zhu Y; Jia Y; Zhuo Y; Su W
    Front Med (Lausanne); 2020; 7():598056. PubMed ID: 33244468
    [No Abstract]   [Full Text] [Related]  

  • 19. Effects of amniotic membrane suspension in the rat alkali burn model.
    Choi JA; Choi JS; Joo CK
    Mol Vis; 2011 Feb; 17():404-12. PubMed ID: 21311604
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Involvement of NADPH oxidases in alkali burn-induced corneal injury.
    Gu XJ; Liu X; Chen YY; Zhao Y; Xu M; Han XJ; Liu QP; Yi JL; Li JM
    Int J Mol Med; 2016 Jul; 38(1):75-82. PubMed ID: 27221536
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.