These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
94 related articles for article (PubMed ID: 22553899)
1. MNBA-mediated β-lactone formation: mechanistic studies and application for the asymmetric total synthesis of tetrahydrolipstatin. Shiina I; Umezaki Y; Kuroda N; Iizumi T; Nagai S; Katoh T J Org Chem; 2012 Jun; 77(11):4885-901. PubMed ID: 22553899 [TBL] [Abstract][Full Text] [Related]
2. Evaluation of the efficiency of the macrolactonization using MNBA in the synthesis of erythromycin A aglycon. Shiina I; Katoh T; Nagai S; Hashizume M Chem Rec; 2009; 9(6):305-20. PubMed ID: 20041452 [TBL] [Abstract][Full Text] [Related]
3. Synthesis and biological investigation of the β-thiolactone and β-lactam analogs of tetrahydrolipstatin. Aubry S; Aubert G; Cresteil T; Crich D Org Biomol Chem; 2012 Apr; 10(13):2629-32. PubMed ID: 22354549 [TBL] [Abstract][Full Text] [Related]
4. Total synthesis of tetrahydrolipstatin and stereoisomers via a highly regio- and diastereoselective carbonylation of epoxyhomoallylic alcohols. Mulzer M; Tiegs BJ; Wang Y; Coates GW; O'Doherty GA J Am Chem Soc; 2014 Jul; 136(30):10814-20. PubMed ID: 25004122 [TBL] [Abstract][Full Text] [Related]
5. Inactivation of pancreatic lipases by amphiphilic reagents 5-(dodecyldithio)-2-nitrobenzoic acid and tetrahydrolipstatin. Dependence upon partitioning between micellar and oil phases. Cudrey C; van Tilbeurgh H; Gargouri Y; Verger R Biochemistry; 1993 Dec; 32(50):13800-8. PubMed ID: 8268155 [TBL] [Abstract][Full Text] [Related]
6. An effective use of benzoic anhydride and its derivatives for the synthesis of carboxylic esters and lactones: a powerful and convenient mixed anhydride method promoted by basic catalysts. Shiina I; Kubota M; Oshiumi H; Hashizume M J Org Chem; 2004 Mar; 69(6):1822-30. PubMed ID: 15058924 [TBL] [Abstract][Full Text] [Related]
7. Inactivation of pancreatic and gastric lipases by tetrahydrolipstatin and alkyl-dithio-5-(2-nitrobenzoic acid). A kinetic study with 1,2-didecanoyl-sn-glycerol monolayers. Ransac S; Gargouri Y; Moreau H; Verger R Eur J Biochem; 1991 Dec; 202(2):395-400. PubMed ID: 1761041 [TBL] [Abstract][Full Text] [Related]
8. Studies on the antiobesity activity of tetrahydrolipstatin, a potent and selective inhibitor of pancreatic lipase. Hogan S; Fleury A; Hadvary P; Lengsfeld H; Meier MK; Triscari J; Sullivan AC Int J Obes; 1987; 11 Suppl 3():35-42. PubMed ID: 3440690 [TBL] [Abstract][Full Text] [Related]
9. Identification of the active-site serine in human pancreatic lipase by chemical modification with tetrahydrolipstatin. Lüthi-Peng Q; Märki HP; Hadváry P FEBS Lett; 1992 Mar; 299(1):111-5. PubMed ID: 1544468 [TBL] [Abstract][Full Text] [Related]
10. Inhibition of pancreatic lipase in vitro by the covalent inhibitor tetrahydrolipstatin. Hadváry P; Lengsfeld H; Wolfer H Biochem J; 1988 Dec; 256(2):357-61. PubMed ID: 3223916 [TBL] [Abstract][Full Text] [Related]
11. Differential inhibition of HMG-CoA synthase and pancreatic lipase by the specific chiral isomers of beta-lactone DU-6622. Tomoda H; Ohbayashi N; Kumagai H; Hashizume H; Sunazuka T; Omura S Biochem Biophys Res Commun; 1999 Nov; 265(2):536-40. PubMed ID: 10558904 [TBL] [Abstract][Full Text] [Related]
12. Construction of an enantiomerically pure 6-substituted 3,5-syn-dihydroxyhexanoic acid system by an enantioselective deprotonation strategy: formal synthesis of an antiobesity agent, (-)-tetrahydrolipstatin. Honda T; Endo K; Ono S Chem Pharm Bull (Tokyo); 2000 Oct; 48(10):1545-8. PubMed ID: 11045467 [TBL] [Abstract][Full Text] [Related]
13. 4-(Dimethylamino)pyridine N-oxide (DMAPO): an effective nucleophilic catalyst in the peptide coupling reaction with 2-methyl-6-nitrobenzoic anhydride. Shiina I; Ushiyama H; Yamada YK; Kawakita Y; Nakata K Chem Asian J; 2008 Feb; 3(2):454-61. PubMed ID: 18219641 [TBL] [Abstract][Full Text] [Related]
14. Mode of action of tetrahydrolipstatin: a derivative of the naturally occurring lipase inhibitor lipstatin. Borgström B Biochim Biophys Acta; 1988 Oct; 962(3):308-16. PubMed ID: 3167082 [TBL] [Abstract][Full Text] [Related]
15. The lipase inhibitor tetrahydrolipstatin binds covalently to the putative active site serine of pancreatic lipase. Hadváry P; Sidler W; Meister W; Vetter W; Wolfer H J Biol Chem; 1991 Feb; 266(4):2021-7. PubMed ID: 1899234 [TBL] [Abstract][Full Text] [Related]
16. Panclicins, novel pancreatic lipase inhibitors. I. Taxonomy, fermentation, isolation and biological activity. Mutoh M; Nakada N; Matsukuma S; Ohshima S; Yoshinari K; Watanabe J; Arisawa M J Antibiot (Tokyo); 1994 Dec; 47(12):1369-75. PubMed ID: 7844031 [TBL] [Abstract][Full Text] [Related]
17. Enantioselective total synthesis of octalactin a using asymmetric aldol reactions and a rapid lactonization to form a medium-sized ring. Shiina I; Hashizume M; Yamai YS; Oshiumi H; Shimazaki T; Takasuna YJ; Ibuka R Chemistry; 2005 Nov; 11(22):6601-8. PubMed ID: 16118824 [TBL] [Abstract][Full Text] [Related]
18. Computational approaches for the discovery of natural pancreatic lipase inhibitors as antiobesity agents. Almasri IM Future Med Chem; 2020 Apr; 12(8):741-757. PubMed ID: 32212943 [TBL] [Abstract][Full Text] [Related]
19. On the inhibition of microbial lipases by tetrahydrolipstatin. Haalck L; Spener F Methods Enzymol; 1997; 286():252-63. PubMed ID: 9309654 [No Abstract] [Full Text] [Related]
20. The effects of the broad-specificity lipase inhibitor, tetrahydrolipstatin, on the growth, development and survival of the larvae of Epiphyas postvittana (Walker) (Tortricidae, Lepidoptera). Markwick NP; Poulton J; McGhie TK; Wohlers MW; Christeller JT J Insect Physiol; 2011 Dec; 57(12):1643-50. PubMed ID: 21910995 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]