These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 22553941)
1. Geochemical weathering increases lead bioaccessibility in semi-arid mine tailings. Hayes SM; Webb SM; Bargar JR; O'Day PA; Maier RM; Chorover J Environ Sci Technol; 2012 Jun; 46(11):5834-41. PubMed ID: 22553941 [TBL] [Abstract][Full Text] [Related]
2. Toxic metal(loid) speciation during weathering of iron sulfide mine tailings under semi-arid climate. Root RA; Hayes SM; Hammond CM; Maier RM; Chorover J Appl Geochem; 2015 Nov; 62():131-149. PubMed ID: 26549929 [TBL] [Abstract][Full Text] [Related]
3. Changes in zinc speciation with mine tailings acidification in a semiarid weathering environment. Hayes SM; O'Day PA; Webb SM; Maier RM; Chorover J Environ Sci Technol; 2011 Sep; 45(17):7166-72. PubMed ID: 21761897 [TBL] [Abstract][Full Text] [Related]
4. Surficial weathering of iron sulfide mine tailings under semi-arid climate. Hayes SM; Root RA; Perdrial N; Maier R; Chorover J Geochim Cosmochim Acta; 2014 Sep; 141():240-257. PubMed ID: 25197102 [TBL] [Abstract][Full Text] [Related]
5. Changes in lead and zinc lability during weathering-induced acidification of desert mine tailings: Coupling chemical and micro-scale analyses. Hayes SM; White SA; Thompson TL; Maier RM; Chorover J Appl Geochem; 2009 Dec; 42(12):2234-2245. PubMed ID: 20161492 [TBL] [Abstract][Full Text] [Related]
6. Effect of weathering product assemblages on Pb bioaccessibility in mine waste: implications for risk management. Palumbo-Roe B; Wragg J; Cave MR; Wagner D Environ Sci Pollut Res Int; 2013 Nov; 20(11):7699-710. PubMed ID: 23381798 [TBL] [Abstract][Full Text] [Related]
7. Characterization of zinc, lead, and cadmium in mine waste: implications for transport, exposure, and bioavailability. Schaider LA; Senn DB; Brabander DJ; McCarthy KD; Shine JP Environ Sci Technol; 2007 Jun; 41(11):4164-71. PubMed ID: 17612206 [TBL] [Abstract][Full Text] [Related]
8. Geochemical fractionation, bioaccessibility and ecological risk of metallic elements in the weathering profiles of typical skarn-type copper tailings from Tongling, China. Liu B; Jiang S; Guan DX; Song X; Li Y; Zhou S; Wang B; Gao B Sci Total Environ; 2023 Oct; 894():164859. PubMed ID: 37336397 [TBL] [Abstract][Full Text] [Related]
10. Molecular speciation controls arsenic and lead bioaccessibility in fugitive dusts from sulfidic mine tailings. Root RA; Chorover J Environ Sci Process Impacts; 2023 Feb; 25(2):288-303. PubMed ID: 36226550 [TBL] [Abstract][Full Text] [Related]
11. The flotation tailings of the former Pb-Zn mine of Touiref (NW Tunisia): mineralogy, mine drainage prediction, base-metal speciation assessment and geochemical modeling. Othmani MA; Souissi F; Bouzahzah H; Bussière B; da Silva EF; Benzaazoua M Environ Sci Pollut Res Int; 2015 Feb; 22(4):2877-90. PubMed ID: 25220771 [TBL] [Abstract][Full Text] [Related]
12. Geochemical and mineralogical characterization of a neutral, low-sulfide/high-carbonate tailings impoundment, Markušovce, eastern Slovakia. Hiller E; Petrák M; Tóth R; Lalinská-Voleková B; Jurkovič L; Kučerová G; Radková A; Sottník P; Vozár J Environ Sci Pollut Res Int; 2013 Nov; 20(11):7627-42. PubMed ID: 23436124 [TBL] [Abstract][Full Text] [Related]
13. Arsenic and iron speciation and mobilization during phytostabilization of pyritic mine tailings. Hammond CM; Root RA; Maier RM; Chorover J Geochim Cosmochim Acta; 2020 Oct; 286():306-323. PubMed ID: 33071297 [TBL] [Abstract][Full Text] [Related]
14. Laboratory dust generation and size-dependent characterization of metal and metalloid-contaminated mine tailings deposits. Gonzales P; Felix O; Alexander C; Lutz E; Ela W; Eduardo Sáez A J Hazard Mater; 2014 Sep; 280():619-26. PubMed ID: 25222928 [TBL] [Abstract][Full Text] [Related]
15. Phytostabilization of mine tailings in arid and semiarid environments--an emerging remediation technology. Mendez MO; Maier RM Environ Health Perspect; 2008 Mar; 116(3):278-83. PubMed ID: 18335091 [TBL] [Abstract][Full Text] [Related]
16. Metal Lability and Mass Transfer Response to Direct-Planting Phytostabilization of Pyritic Mine Tailings. Hammond CM; Root RA; Maier RM; Chorover J Minerals (Basel); 2022 Jun; 12(6):. PubMed ID: 36419772 [TBL] [Abstract][Full Text] [Related]
17. (Micro)spectroscopic analyses of particle size dependence on arsenic distribution and speciation in mine wastes. Kim CS; Chi C; Miller SR; Rosales RA; Sugihara ES; Akau J; Rytuba JJ; Webb SM Environ Sci Technol; 2013 Aug; 47(15):8164-71. PubMed ID: 23889478 [TBL] [Abstract][Full Text] [Related]
18. Effects of soil composition and mineralogy on the bioaccessibility of arsenic from tailings and soil in gold mine districts of Nova Scotia. Meunier L; Walker SR; Wragg J; Parsons MB; Koch I; Jamieson HE; Reimer KJ Environ Sci Technol; 2010 Apr; 44(7):2667-74. PubMed ID: 20218545 [TBL] [Abstract][Full Text] [Related]
19. Bioaccessibility of As, Cu, Pb, and Zn in mine waste, urban soil, and road dust in the historical mining village of Kaňk, Czech Republic. Drahota P; Raus K; Rychlíková E; Rohovec J Environ Geochem Health; 2018 Aug; 40(4):1495-1512. PubMed ID: 28620816 [TBL] [Abstract][Full Text] [Related]
20. Environmental and health risk assessment of Pb, Zn, As and Sb in soccer field soils and sediments from mine tailings: solid speciation and bioaccessibility. Pascaud G; Leveque T; Soubrand M; Boussen S; Joussein E; Dumat C Environ Sci Pollut Res Int; 2014 Mar; 21(6):4254-64. PubMed ID: 24306721 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]