These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
97 related articles for article (PubMed ID: 22554094)
1. Gas-phase studies of purine 3-methyladenine DNA glycosylase II (AlkA) substrates. Michelson AZ; Chen M; Wang K; Lee JK J Am Chem Soc; 2012 Jun; 134(23):9622-33. PubMed ID: 22554094 [TBL] [Abstract][Full Text] [Related]
2. The Escherichia coli 3-methyladenine DNA glycosylase AlkA has a remarkably versatile active site. O'Brien PJ; Ellenberger T J Biol Chem; 2004 Jun; 279(26):26876-84. PubMed ID: 15126496 [TBL] [Abstract][Full Text] [Related]
3. Kinetic mechanism for the flipping and excision of 1,N(6)-ethenoadenine by AlkA. Taylor EL; O'Brien PJ Biochemistry; 2015 Jan; 54(3):898-908. PubMed ID: 25537480 [TBL] [Abstract][Full Text] [Related]
4. Novel repair activities of AlkA (3-methyladenine DNA glycosylase II) and endonuclease VIII for xanthine and oxanine, guanine lesions induced by nitric oxide and nitrous acid. Terato H; Masaoka A; Asagoshi K; Honsho A; Ohyama Y; Suzuki T; Yamada M; Makino K; Yamamoto K; Ide H Nucleic Acids Res; 2002 Nov; 30(22):4975-84. PubMed ID: 12434002 [TBL] [Abstract][Full Text] [Related]
5. Enzymatic repair of 5-formyluracil. I. Excision of 5-formyluracil site-specifically incorporated into oligonucleotide substrates by alka protein (Escherichia coli 3-methyladenine DNA glycosylase II). Masaoka A; Terato H; Kobayashi M; Honsho A; Ohyama Y; Ide H J Biol Chem; 1999 Aug; 274(35):25136-43. PubMed ID: 10455195 [TBL] [Abstract][Full Text] [Related]
6. Excision of 8-methylguanine site-specifically incorporated into oligonucleotide substrates by the AlkA protein of Escherichia coli. Gasparutto D; Dhérin C; Boiteux S; Cadet J DNA Repair (Amst); 2002 Jun; 1(6):437-47. PubMed ID: 12509232 [TBL] [Abstract][Full Text] [Related]
7. Activity of Escherichia coli DNA-glycosylases on DNA damaged by methylating and ethylating agents and influence of 3-substituted adenine derivatives. Tudek B; Van Zeeland AA; Kusmierek JT; Laval J Mutat Res; 1998 Mar; 407(2):169-76. PubMed ID: 9637245 [TBL] [Abstract][Full Text] [Related]
8. Excision of 3-methylguanine from alkylated DNA by 3-methyladenine DNA glycosylase I of Escherichia coli. Bjelland S; Bjørås M; Seeberg E Nucleic Acids Res; 1993 May; 21(9):2045-9. PubMed ID: 8502545 [TBL] [Abstract][Full Text] [Related]
9. Gas-Phase Studies of Formamidopyrimidine Glycosylase (Fpg) Substrates. Kiruba GS; Xu J; Zelikson V; Lee JK Chemistry; 2016 Mar; 22(11):3881-90. PubMed ID: 26894440 [TBL] [Abstract][Full Text] [Related]
10. Effects of substrate specificity on initiating the base excision repair of N-methylpurines by variant human 3-methyladenine DNA glycosylases. Connor EE; Wilson JJ; Wyatt MD Chem Res Toxicol; 2005 Jan; 18(1):87-94. PubMed ID: 15651853 [TBL] [Abstract][Full Text] [Related]
11. Kinetic mechanism for the excision of hypoxanthine by Escherichia coli AlkA and evidence for binding to DNA ends. Zhao B; O'Brien PJ Biochemistry; 2011 May; 50(20):4350-9. PubMed ID: 21491902 [TBL] [Abstract][Full Text] [Related]
12. Human alkyladenine DNA glycosylase uses acid-base catalysis for selective excision of damaged purines. O'Brien PJ; Ellenberger T Biochemistry; 2003 Oct; 42(42):12418-29. PubMed ID: 14567703 [TBL] [Abstract][Full Text] [Related]
13. Structure-function studies of an unusual 3-methyladenine DNA glycosylase II (AlkA) from Deinococcus radiodurans. Moe E; Hall DR; Leiros I; Monsen VT; Timmins J; McSweeney S Acta Crystallogr D Biol Crystallogr; 2012 Jun; 68(Pt 6):703-12. PubMed ID: 22683793 [TBL] [Abstract][Full Text] [Related]
14. Recognition and processing of a new repertoire of DNA substrates by human 3-methyladenine DNA glycosylase (AAG). Lee CY; Delaney JC; Kartalou M; Lingaraju GM; Maor-Shoshani A; Essigmann JM; Samson LD Biochemistry; 2009 Mar; 48(9):1850-61. PubMed ID: 19219989 [TBL] [Abstract][Full Text] [Related]
15. Release of normal bases from intact DNA by a native DNA repair enzyme. Berdal KG; Johansen RF; Seeberg E EMBO J; 1998 Jan; 17(2):363-7. PubMed ID: 9430628 [TBL] [Abstract][Full Text] [Related]
16. Two DNA glycosylases in Escherichia coli which release primarily 3-methyladenine. Thomas L; Yang CH; Goldthwait DA Biochemistry; 1982 Mar; 21(6):1162-9. PubMed ID: 7041972 [TBL] [Abstract][Full Text] [Related]
17. Acidity and proton affinity of hypoxanthine in the gas phase versus in solution: intrinsic reactivity and biological implications. Sun X; Lee JK J Org Chem; 2007 Aug; 72(17):6548-55. PubMed ID: 17655363 [TBL] [Abstract][Full Text] [Related]
18. Excision of DNA adducts of nitrogen mustards by bacterial and mammalian 3-methyladenine-DNA glycosylases. Mattes WB; Lee CS; Laval J; O'Connor TR Carcinogenesis; 1996 Apr; 17(4):643-8. PubMed ID: 8625472 [TBL] [Abstract][Full Text] [Related]
19. Chloroethylnitrosourea-derived ethano cytosine and adenine adducts are substrates for Escherichia coli glycosylases excising analogous etheno adducts. Guliaev AB; Singer B; Hang B DNA Repair (Amst); 2004 Oct; 3(10):1311-21. PubMed ID: 15336626 [TBL] [Abstract][Full Text] [Related]
20. Preparation of DNA containing 7-methylguanine as unique lesions. Asagoshi K; Terato H; Ohyama Y; Ide H Nucleic Acids Symp Ser; 1999; (42):83-4. PubMed ID: 10780390 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]