These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Fluorescence-Activated Cell Sorting as a Tool for Recombinant Strain Screening. Skrekas C; Ferreira R; David F Methods Mol Biol; 2022; 2513():39-57. PubMed ID: 35781199 [TBL] [Abstract][Full Text] [Related]
4. Colorimetric High-Throughput Screening Assays for the Directed Evolution of Fungal Laccases. Pardo I; Camarero S Methods Mol Biol; 2018; 1685():247-254. PubMed ID: 29086313 [TBL] [Abstract][Full Text] [Related]
5. RNAi-Assisted Genome Evolution (RAGE) in Saccharomyces cerevisiae. Si T; Zhao H Methods Mol Biol; 2016; 1470():183-98. PubMed ID: 27581294 [TBL] [Abstract][Full Text] [Related]
6. Engineering and Evolution of Saccharomyces cerevisiae to Produce Biofuels and Chemicals. Turner TL; Kim H; Kong II; Liu JJ; Zhang GC; Jin YS Adv Biochem Eng Biotechnol; 2018; 162():175-215. PubMed ID: 27913828 [TBL] [Abstract][Full Text] [Related]
8. Development of GFP-based high-throughput screening system for directed evolution of glucose oxidase. Kovačević G; Ostafe R; Balaž AM; Fischer R; Prodanović R J Biosci Bioeng; 2019 Jan; 127(1):30-37. PubMed ID: 30033354 [TBL] [Abstract][Full Text] [Related]
9. Characterization and designing of an SAM riboswitch to establish a high-throughput screening platform for SAM overproduction in Saccharomyces cerevisiae. Fu X; Zuo X; Zhao X; Zhang H; Zhang C; Lu W Biotechnol Bioeng; 2023 Dec; 120(12):3622-3637. PubMed ID: 37691180 [TBL] [Abstract][Full Text] [Related]
10. Engineered NADH-dependent GRE2 from Saccharomyces cerevisiae by directed enzyme evolution enhances HMF reduction using additional cofactor NADPH. Moon J; Liu ZL Enzyme Microb Technol; 2012 Feb; 50(2):115-20. PubMed ID: 22226197 [TBL] [Abstract][Full Text] [Related]
11. Biosensors design in yeast and applications in metabolic engineering. Qiu C; Zhai H; Hou J FEMS Yeast Res; 2019 Dec; 19(8):. PubMed ID: 31778177 [TBL] [Abstract][Full Text] [Related]
12. Combining Gal4p-mediated expression enhancement and directed evolution of isoprene synthase to improve isoprene production in Saccharomyces cerevisiae. Wang F; Lv X; Xie W; Zhou P; Zhu Y; Yao Z; Yang C; Yang X; Ye L; Yu H Metab Eng; 2017 Jan; 39():257-266. PubMed ID: 28034770 [TBL] [Abstract][Full Text] [Related]
14. Development and characterization of a glycine biosensor system for fine-tuned metabolic regulation in Escherichia coli. Hong KQ; Zhang J; Jin B; Chen T; Wang ZW Microb Cell Fact; 2022 Apr; 21(1):56. PubMed ID: 35392910 [TBL] [Abstract][Full Text] [Related]
15. Directed evolution of a cellodextrin transporter for improved biofuel production under anaerobic conditions in Saccharomyces cerevisiae. Lian J; Li Y; HamediRad M; Zhao H Biotechnol Bioeng; 2014 Aug; 111(8):1521-31. PubMed ID: 24519319 [TBL] [Abstract][Full Text] [Related]
16. Metabolic engineering of a Saccharomyces cerevisiae strain capable of simultaneously utilizing glucose and galactose to produce enantiopure (2R,3R)-butanediol. Lian J; Chao R; Zhao H Metab Eng; 2014 May; 23():92-9. PubMed ID: 24525332 [TBL] [Abstract][Full Text] [Related]
18. From molecular engineering to process engineering: development of high-throughput screening methods in enzyme directed evolution. Ye L; Yang C; Yu H Appl Microbiol Biotechnol; 2018 Jan; 102(2):559-567. PubMed ID: 29181567 [TBL] [Abstract][Full Text] [Related]
19. A synthetic suicide riboswitch for the high-throughput screening of metabolite production in Saccharomyces cerevisiae. Lee SW; Oh MK Metab Eng; 2015 Mar; 28():143-150. PubMed ID: 25596509 [TBL] [Abstract][Full Text] [Related]
20. Gene Amplification on Demand Accelerates Cellobiose Utilization in Engineered Saccharomyces cerevisiae. Oh EJ; Skerker JM; Kim SR; Wei N; Turner TL; Maurer MJ; Arkin AP; Jin YS Appl Environ Microbiol; 2016 Jun; 82(12):3631-3639. PubMed ID: 27084006 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]