BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 22554890)

  • 21. The aging of the immune response in Drosophila melanogaster.
    Khan I; Prasad NG
    J Gerontol A Biol Sci Med Sci; 2013 Feb; 68(2):129-35. PubMed ID: 22879448
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Systems genetics analysis of body weight and energy metabolism traits in Drosophila melanogaster.
    Jumbo-Lucioni P; Ayroles JF; Chambers MM; Jordan KW; Leips J; Mackay TF; De Luca M
    BMC Genomics; 2010 May; 11():297. PubMed ID: 20459830
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Rel/NF-kappaB double mutants reveal that cellular immunity is central to Drosophila host defense.
    Matova N; Anderson KV
    Proc Natl Acad Sci U S A; 2006 Oct; 103(44):16424-9. PubMed ID: 17060622
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Genetic architecture of natural variation in Drosophila melanogaster aggressive behavior.
    Shorter J; Couch C; Huang W; Carbone MA; Peiffer J; Anholt RR; Mackay TF
    Proc Natl Acad Sci U S A; 2015 Jul; 112(27):E3555-63. PubMed ID: 26100892
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Natural genetic variation in transcriptome reflects network structure inferred with major effect mutations: insulin/TOR and associated phenotypes in Drosophila melanogaster.
    Nuzhdin SV; Brisson JA; Pickering A; Wayne ML; Harshman LG; McIntyre LM
    BMC Genomics; 2009 Mar; 10():124. PubMed ID: 19317915
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Imd pathway is involved in the interaction of Drosophila melanogaster with the entomopathogenic bacteria, Xenorhabdus nematophila and Photorhabdus luminescens.
    Aymeric JL; Givaudan A; Duvic B
    Mol Immunol; 2010 Aug; 47(14):2342-8. PubMed ID: 20627393
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The Genomic Basis of Postponed Senescence in Drosophila melanogaster.
    Carnes MU; Campbell T; Huang W; Butler DG; Carbone MA; Duncan LH; Harbajan SV; King EM; Peterson KR; Weitzel A; Zhou S; Mackay TF
    PLoS One; 2015; 10(9):e0138569. PubMed ID: 26378456
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Alternative measures of response to Pseudomonas aeruginosa infection in Drosophila melanogaster.
    Corby-Harris V; Habel KE; Ali FG; Promislow DE
    J Evol Biol; 2007 Mar; 20(2):526-33. PubMed ID: 17305818
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Involvement of EnvZ-OmpR two-component system in virulence control of Escherichia coli in Drosophila melanogaster.
    Pukklay P; Nakanishi Y; Nitta M; Yamamoto K; Ishihama A; Shiratsuchi A
    Biochem Biophys Res Commun; 2013 Aug; 438(2):306-11. PubMed ID: 23886953
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Senescence of the cellular immune response in Drosophila melanogaster.
    Mackenzie DK; Bussière LF; Tinsley MC
    Exp Gerontol; 2011 Nov; 46(11):853-9. PubMed ID: 21798332
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Genetic analysis of variation in lifespan using a multiparental advanced intercross Drosophila mapping population.
    Highfill CA; Reeves GA; Macdonald SJ
    BMC Genet; 2016 Aug; 17():113. PubMed ID: 27485207
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The complex contributions of genetics and nutrition to immunity in Drosophila melanogaster.
    Unckless RL; Rottschaefer SM; Lazzaro BP
    PLoS Genet; 2015 Mar; 11(3):e1005030. PubMed ID: 25764027
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sexual antagonism for resistance and tolerance to infection in Drosophila melanogaster.
    Vincent CM; Sharp NP
    Proc Biol Sci; 2014 Aug; 281(1788):20140987. PubMed ID: 24966317
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The genetic architecture of defence as resistance to and tolerance of bacterial infection in Drosophila melanogaster.
    Howick VM; Lazzaro BP
    Mol Ecol; 2017 Mar; 26(6):1533-1546. PubMed ID: 28099780
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Genetic Influences of the Microbiota on the Life Span of Drosophila melanogaster.
    Matthews MK; Wilcox H; Hughes R; Veloz M; Hammer A; Banks B; Walters A; Schneider KJ; Sexton CE; Chaston JM
    Appl Environ Microbiol; 2020 May; 86(10):. PubMed ID: 32144104
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of co-occurring Wolbachia and Spiroplasma endosymbionts on the Drosophila immune response against insect pathogenic and non-pathogenic bacteria.
    Shokal U; Yadav S; Atri J; Accetta J; Kenney E; Banks K; Katakam A; Jaenike J; Eleftherianos I
    BMC Microbiol; 2016 Feb; 16():16. PubMed ID: 26862076
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Genome-wide transcript profiles in aging and calorically restricted Drosophila melanogaster.
    Pletcher SD; Macdonald SJ; Marguerie R; Certa U; Stearns SC; Goldstein DB; Partridge L
    Curr Biol; 2002 Apr; 12(9):712-23. PubMed ID: 12007414
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Quantitative genomics of starvation stress resistance in Drosophila.
    Harbison ST; Chang S; Kamdar KP; Mackay TF
    Genome Biol; 2005; 6(4):R36. PubMed ID: 15833123
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Age- and diet-specific effects of variation at S6 kinase on life history, metabolic, and immune response traits in Drosophila melanogaster.
    Cho I; Horn L; Felix TM; Foster L; Gregory G; Starz-Gaiano M; Chambers MM; De Luca M; Leips J
    DNA Cell Biol; 2010 Sep; 29(9):473-85. PubMed ID: 20491566
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Functional characterization of the infection-inducible peptide Edin in Drosophila melanogaster.
    Vanha-Aho LM; Kleino A; Kaustio M; Ulvila J; Wilke B; Hultmark D; Valanne S; Rämet M
    PLoS One; 2012; 7(5):e37153. PubMed ID: 22606343
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.