These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 22555145)

  • 1. Mixed-phase PdRu bimetallic structures with high activity and stability for formic acid electrooxidation.
    Wu D; Zheng Z; Gao S; Cao M; Cao R
    Phys Chem Chem Phys; 2012 Jun; 14(22):8051-7. PubMed ID: 22555145
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ru-assisted synthesis of Pd/Ru nanodendrites with high activity for ethanol electrooxidation.
    Zhang K; Bin D; Yang B; Wang C; Ren F; Du Y
    Nanoscale; 2015 Aug; 7(29):12445-51. PubMed ID: 26135381
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A facile one-pot synthesis and enhanced formic acid oxidation of monodisperse Pd-Cu nanocatalysts.
    Park KH; Lee YW; Kang SW; Han SW
    Chem Asian J; 2011 Jun; 6(6):1515-9. PubMed ID: 21509940
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-dimensional Pt-on-Pd bimetallic nanodendrites supported on graphene nanosheet: facile synthesis and used as an advanced nanoelectrocatalyst for methanol oxidation.
    Guo S; Dong S; Wang E
    ACS Nano; 2010 Jan; 4(1):547-55. PubMed ID: 20000845
    [TBL] [Abstract][Full Text] [Related]  

  • 5. One-pot synthesis of rugged PdRu nanosheets as the efficient catalysts for polyalcohol electrooxidation.
    Zou B; Gao F; You H; Li Z; Zhang Y; Wu Z; Song T; Du Y
    J Colloid Interface Sci; 2021 Nov; 601():42-49. PubMed ID: 34052725
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Silsesquioxane stabilized platinum-palladium alloy nanoparticles with morphology evolution and enhanced electrocatalytic oxidation of formic acid.
    Zhao Q; Ge C; Cai Y; Qiao Q; Jia X
    J Colloid Interface Sci; 2018 Mar; 514():425-432. PubMed ID: 29278798
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In situ formation of Au-Pd bimetallic active sites promoting the physically mixed monometallic catalysts in the liquid-phase oxidation of alcohols.
    Wang D; Villa A; Spontoni P; Su DS; Prati L
    Chemistry; 2010 Sep; 16(33):10007-13. PubMed ID: 20623809
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synergistic catalysis of metal-organic framework-immobilized Au-Pd nanoparticles in dehydrogenation of formic acid for chemical hydrogen storage.
    Gu X; Lu ZH; Jiang HL; Akita T; Xu Q
    J Am Chem Soc; 2011 Aug; 133(31):11822-5. PubMed ID: 21761819
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanoporous PdNi Alloy Nanowires As Highly Active Catalysts for the Electro-Oxidation of Formic Acid.
    Du C; Chen M; Wang W; Yin G
    ACS Appl Mater Interfaces; 2011 Feb; 3(2):105-9. PubMed ID: 21192691
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multilayered Pt/Ru nanorods with controllable bimetallic sites as methanol oxidation catalysts.
    Yoo SJ; Jeon TY; Kim KS; Lim TH; Sung YE
    Phys Chem Chem Phys; 2010 Dec; 12(46):15240-6. PubMed ID: 21046021
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Various Morphology of WO₃ Modified Activated Carbon Supported Pd Catalysts with Enhanced Formic Acid Electrooxidation.
    Li PW; Li YH; Ma YM; Li QX
    J Nanosci Nanotechnol; 2019 Dec; 19(12):7777-7784. PubMed ID: 31196289
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of Ni-Ru alloy nanoparticles and their high catalytic activity in dehydrogenation of ammonia borane.
    Chen G; Desinan S; Rosei R; Rosei F; Ma D
    Chemistry; 2012 Jun; 18(25):7925-30. PubMed ID: 22539444
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Facile fabrication of novel PdRu nanoflowers as highly active catalysts for the electrooxidation of methanol.
    Xu H; Yan B; Zhang K; Wang J; Li S; Wang C; Shiraishi Y; Du Y; Yang P
    J Colloid Interface Sci; 2017 Nov; 505():1-8. PubMed ID: 28554040
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A nanoporous PdCo alloy as a highly active electrocatalyst for the oxygen-reduction reaction and formic acid electrooxidation.
    Xu C; Liu Y; Zhang H; Geng H
    Chem Asian J; 2013 Nov; 8(11):2721-8. PubMed ID: 23868702
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hollow palladium nanospheres with porous shells supported on graphene as enhanced electrocatalysts for formic acid oxidation.
    Wang B; Yang J; Wang L; Wang R; Tian C; Jiang B; Tian M; Fu H
    Phys Chem Chem Phys; 2013 Nov; 15(44):19353-9. PubMed ID: 24121733
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the origin of reactive Pd catalysts for an electrooxidation of formic acid.
    Jeon H; Uhm S; Jeong B; Lee J
    Phys Chem Chem Phys; 2011 Apr; 13(13):6192-6. PubMed ID: 21359275
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PdRu Bimetallic Nanoparticles/Metal-Organic Framework Composite through Supercritical CO
    Matsuyama K; Matsuoka T; Eiro M; Kato T; Okuyama T
    ACS Omega; 2024 May; 9(18):20437-20443. PubMed ID: 38737038
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of Pd/Ru Bimetallic Nanoparticles by
    Gomez-Bolivar J; Mikheenko IP; Orozco RL; Sharma S; Banerjee D; Walker M; Hand RA; Merroun ML; Macaskie LE
    Front Microbiol; 2019; 10():1276. PubMed ID: 31281292
    [No Abstract]   [Full Text] [Related]  

  • 19. Electrocatalytic activity of Pd-Co bimetallic mixtures for formic acid oxidation studied by scanning electrochemical microscopy.
    Jung C; Sánchez-Sánchez CM; Lin CL; Rodríguez-López J; Bard AJ
    Anal Chem; 2009 Aug; 81(16):7003-8. PubMed ID: 19627121
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design and synthesis of Pd-MnO2 nanolamella-graphene composite as a high-performance multifunctional electrocatalyst towards formic acid and methanol oxidation.
    Huang H; Wang X
    Phys Chem Chem Phys; 2013 Jul; 15(25):10367-75. PubMed ID: 23681315
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.