These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 22555541)

  • 1. Comparison in accumulation of lanthanide elements among three Brassicaceae plant sprouts.
    Anan Y; Awaya Y; Ogihara Y; Yoshida M; Yawata A; Ogra Y
    Bull Environ Contam Toxicol; 2012 Jul; 89(1):133-7. PubMed ID: 22555541
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relationship between lanthanide contents in aquatic turtles and environmental exposures.
    Censi P; Randazzo LA; D'Angelo S; Saiano F; Zuddas P; Mazzola S; Cuttitta A
    Chemosphere; 2013 May; 91(8):1130-5. PubMed ID: 23411091
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of thallium fractions in the soil and pollution origins on Tl uptake by hyperaccumulator plants: a key factor for the assessment of phytoextraction.
    Al-Najar H; Kaschl A; Schulz R; Römheld V
    Int J Phytoremediation; 2005; 7(1):55-67. PubMed ID: 15943244
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Factors affecting accumulation of thallium and other trace elements in two wild Brassicaceae spontaneously growing on soils contaminated by tailings dam waste.
    Madejón P; Murillo JM; Marañón T; Lepp NW
    Chemosphere; 2007 Feb; 67(1):20-8. PubMed ID: 17123576
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The uptake of Cs and Sr from soil to radish (Raphanus sativus L.)- potential for phytoextraction and remediation of contaminated soils.
    Wang D; Wen F; Xu C; Tang Y; Luo X
    J Environ Radioact; 2012 Aug; 110():78-83. PubMed ID: 22402224
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phytoremediation of organic contaminants in soil and groundwater.
    Reichenauer TG; Germida JJ
    ChemSusChem; 2008; 1(8-9):708-17. PubMed ID: 18698569
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phytoextraction of endosulfan a remediation technique.
    Mukherjee I; Kumar A
    Bull Environ Contam Toxicol; 2012 Feb; 88(2):250-4. PubMed ID: 22052137
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phytoremediation: plant-endophyte partnerships take the challenge.
    Weyens N; van der Lelie D; Taghavi S; Vangronsveld J
    Curr Opin Biotechnol; 2009 Apr; 20(2):248-54. PubMed ID: 19327979
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thallium uptake by white mustard (Sinapis alba L.) grown on moderately contaminated soils--agro-environmental implications.
    Vanek A; Komárek M; Chrastný V; Becka D; Mihaljevic M; Sebek O; Panusková G; Schusterová Z
    J Hazard Mater; 2010 Oct; 182(1-3):303-8. PubMed ID: 20605066
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biological toxicity of lanthanide elements on algae.
    Tai P; Zhao Q; Su D; Li P; Stagnitti F
    Chemosphere; 2010 Aug; 80(9):1031-5. PubMed ID: 20547408
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of bacteria on lanthanide and actinide transfer from specific soil components (humus, soil minerals and vitrified municipal solid waste incinerator bottom ash) to corn plants: Sr-Nd isotope evidence.
    Aouad G; Stille P; Crovisier JL; Geoffroy VA; Meyer JM; Lahd-Geagea M
    Sci Total Environ; 2006 Nov; 370(2-3):545-51. PubMed ID: 16973205
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Allocation plasticity and plant-metal partitioning: meta-analytical perspectives in phytoremediation.
    Audet P; Charest C
    Environ Pollut; 2008 Nov; 156(2):290-6. PubMed ID: 18362044
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Atrnazine in water and biodegradation in a recharge area of Guarany aquifer in Brazil.
    Cerdeira AL; Santos NA; Ueta J; Shuhama IK; Pessoa MC; Smith S; Lanchote VL
    Bull Environ Contam Toxicol; 2004 Jul; 73(1):117-24. PubMed ID: 15386081
    [No Abstract]   [Full Text] [Related]  

  • 14. Cadmium phytoextraction potential of different Alyssum species.
    Barzanti R; Colzi I; Arnetoli M; Gallo A; Pignattelli S; Gabbrielli R; Gonnelli C
    J Hazard Mater; 2011 Nov; 196():66-72. PubMed ID: 21944702
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polyamines increase plant potential for phytoremediation of soils polluted with heavy metals.
    Shevyakova NI; Il'ina EN; Kuznetsov VV
    Dokl Biol Sci; 2008; 423():457-60. PubMed ID: 19213436
    [No Abstract]   [Full Text] [Related]  

  • 16. Characteristics of Cd uptake and accumulation in two Cd accumulator oilseed rape species.
    Ru SH; Wang JQ; Su DC
    J Environ Sci (China); 2004; 16(4):594-8. PubMed ID: 15495963
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phytoextraction potential of the nickel hyperaccumulators Leptoplax emarginata and Bornmuellera tymphaea.
    Chardot V; Massoura ST; Echevarria G; Reeves RD; Morel JL
    Int J Phytoremediation; 2005; 7(4):323-35. PubMed ID: 16463544
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Soil plant microbe interactions in phytoremediation.
    Karthikeyan R; Kulakow PA
    Adv Biochem Eng Biotechnol; 2003; 78():51-74. PubMed ID: 12674398
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Environmental fate of the herbicide molinate in a rice-paddy-soil lysimeter.
    Park BJ; Kyung KS; Choi JH; Im GJ; Kim IS; Shim JH
    Bull Environ Contam Toxicol; 2005 Nov; 75(5):937-44. PubMed ID: 16400582
    [No Abstract]   [Full Text] [Related]  

  • 20. Characteristics of water and ion exchange of Elodea nuttallii cells at high concentrations of lanthanides.
    Vorob'ev VN; Mirziev SI; Alexandrov EA; Sibgatullin TA
    Chemosphere; 2016 Dec; 165():329-334. PubMed ID: 27664522
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.