These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 22556116)

  • 1. Laser direct-write of single microbeads into spatially-ordered patterns.
    Phamduy TB; Raof NA; Schiele NR; Yan Z; Corr DT; Huang Y; Xie Y; Chrisey DB
    Biofabrication; 2012 Jun; 4(2):025006. PubMed ID: 22556116
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single-step laser-based fabrication and patterning of cell-encapsulated alginate microbeads.
    Kingsley DM; Dias AD; Chrisey DB; Corr DT
    Biofabrication; 2013 Dec; 5(4):045006. PubMed ID: 24192221
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The application of an optically switched dielectrophoretic (ODEP) force for the manipulation and assembly of cell-encapsulating alginate microbeads in a microfluidic perfusion cell culture system for bottom-up tissue engineering.
    Lin YH; Yang YW; Chen YD; Wang SS; Chang YH; Wu MH
    Lab Chip; 2012 Mar; 12(6):1164-73. PubMed ID: 22322420
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic microarray system with gentle retrieval mechanism for cell-encapsulating hydrogel beads.
    Tan WH; Takeuchi S
    Lab Chip; 2008 Feb; 8(2):259-66. PubMed ID: 18231664
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro culture and oxygen consumption of NSCs in size-controlled neurospheres of Ca-alginate/gelatin microbead.
    Song K; Yang Y; Li S; Wu M; Wu Y; Lim M; Liu T
    Mater Sci Eng C Mater Biol Appl; 2014 Jul; 40():197-203. PubMed ID: 24857483
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neural lineage differentiation of embryonic stem cells within alginate microbeads.
    Li L; Davidovich AE; Schloss JM; Chippada U; Schloss RR; Langrana NA; Yarmush ML
    Biomaterials; 2011 Jul; 32(20):4489-97. PubMed ID: 21481927
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of mammalian cell-enclosing calcium-alginate hydrogel fibers in a co-flowing stream.
    Takei T; Sakai S; Ijima H; Kawakami K
    Biotechnol J; 2006 Sep; 1(9):1014-7. PubMed ID: 16941441
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differentiation of embryoid-body cells derived from embryonic stem cells into hepatocytes in alginate microbeads in vitro.
    Fang S; Qiu YD; Mao L; Shi XL; Yu DC; Ding YT
    Acta Pharmacol Sin; 2007 Dec; 28(12):1924-30. PubMed ID: 18031606
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Controlled release of rat adipose-derived stem cells from alginate microbeads.
    Leslie SK; Cohen DJ; Sedlaczek J; Pinsker EJ; Boyan BD; Schwartz Z
    Biomaterials; 2013 Nov; 34(33):8172-84. PubMed ID: 23906513
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Size control of calcium alginate beads containing living cells using micro-nozzle array.
    Sugiura S; Oda T; Izumida Y; Aoyagi Y; Satake M; Ochiai A; Ohkohchi N; Nakajima M
    Biomaterials; 2005 Jun; 26(16):3327-31. PubMed ID: 15603828
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alternating current electric field effects on neural stem cell viability and differentiation.
    Matos MA; Cicerone MT
    Biotechnol Prog; 2010; 26(3):664-70. PubMed ID: 20205161
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sphyga: a multiparameter open source tool for fabricating smart and tunable hydrogel microbeads.
    Tirella A; Magliaro C; Penta M; Troncone M; Pimentel R; Ahluwalia A
    Biofabrication; 2014 Jun; 6(2):025009. PubMed ID: 24694569
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Encapsulation of mesenchymal stem cells from Wharton's jelly in alginate microbeads.
    Penolazzi L; Tavanti E; Vecchiatini R; Lambertini E; Vesce F; Gambari R; Mazzitelli S; Mancuso F; Luca G; Nastruzzi C; Piva R
    Tissue Eng Part C Methods; 2010 Feb; 16(1):141-55. PubMed ID: 19402785
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Towards a fully synthetic substitute of alginate: optimization of a thermal gelation/chemical cross-linking scheme ("tandem" gelation) for the production of beads and liquid-core capsules.
    Cellesi F; Weber W; Fussenegger M; Hubbell JA; Tirelli N
    Biotechnol Bioeng; 2004 Dec; 88(6):740-9. PubMed ID: 15532084
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microcultivation of anaerobic bacteria single cells entrapped in alginate microbeads.
    Börner RA; Aliaga MT; Mattiasson B
    Biotechnol Lett; 2013 Mar; 35(3):397-405. PubMed ID: 23224821
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Release of angiogenic growth factors from cells encapsulated in alginate beads with bioactive glass.
    Keshaw H; Forbes A; Day RM
    Biomaterials; 2005 Jul; 26(19):4171-9. PubMed ID: 15664644
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of a new approach to investigating the drug transfer from colloidal carrier systems applying lipid nanosuspension-containing alginate microbeads as acceptor.
    Strasdat B; Bunjes H
    Int J Pharm; 2015 Jul; 489(1-2):203-9. PubMed ID: 25943880
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sodium alginate hydrogel-based bioprinting using a novel multinozzle bioprinting system.
    Song SJ; Choi J; Park YD; Hong S; Lee JJ; Ahn CB; Choi H; Sun K
    Artif Organs; 2011 Nov; 35(11):1132-6. PubMed ID: 22097985
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alginate core-shell beads for simplified three-dimensional tumor spheroid culture and drug screening.
    Yu L; Ni C; Grist SM; Bayly C; Cheung KC
    Biomed Microdevices; 2015 Apr; 17(2):33. PubMed ID: 25681969
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of a three-dimensional bioprinter: construction of cell supporting structures using hydrogel and state-of-the-art inkjet technology.
    Nishiyama Y; Nakamura M; Henmi C; Yamaguchi K; Mochizuki S; Nakagawa H; Takiura K
    J Biomech Eng; 2009 Mar; 131(3):035001. PubMed ID: 19154078
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.