BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 22556417)

  • 1. High potency zinc modulation of human P2X2 receptors and low potency zinc modulation of rat P2X2 receptors share a common molecular mechanism.
    Punthambaker S; Blum JA; Hume RI
    J Biol Chem; 2012 Jun; 287(26):22099-111. PubMed ID: 22556417
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Potent and long-lasting inhibition of human P2X2 receptors by copper.
    Punthambaker S; Hume RI
    Neuropharmacology; 2014 Feb; 77():167-76. PubMed ID: 24067922
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An intersubunit zinc binding site in rat P2X2 receptors.
    Nagaya N; Tittle RK; Saar N; Dellal SS; Hume RI
    J Biol Chem; 2005 Jul; 280(28):25982-93. PubMed ID: 15899882
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Salt bridge switching from Arg290/Glu167 to Arg290/ATP promotes the closed-to-open transition of the P2X2 receptor.
    Hausmann R; Günther J; Kless A; Kuhlmann D; Kassack MU; Bahrenberg G; Markwardt F; Schmalzing G
    Mol Pharmacol; 2013 Jan; 83(1):73-84. PubMed ID: 23041661
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of histidine residues in modulation of the rat P2X(2) purinoceptor by zinc and pH.
    Clyne JD; LaPointe LD; Hume RI
    J Physiol; 2002 Mar; 539(Pt 2):347-59. PubMed ID: 11882669
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A histidine scan to probe the flexibility of the rat P2X2 receptor zinc-binding site.
    Tittle RK; Power JM; Hume RI
    J Biol Chem; 2007 Jul; 282(27):19526-33. PubMed ID: 17517890
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lithocholic acid inhibits P2X2 and potentiates P2X4 receptor channel gating.
    Sivcev S; Slavikova B; Ivetic M; Knezu M; Kudova E; Zemkova H
    J Steroid Biochem Mol Biol; 2020 Sep; 202():105725. PubMed ID: 32652201
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modulation of P2X3 and P2X2/3 Receptors by Monoclonal Antibodies.
    Shcherbatko A; Foletti D; Poulsen K; Strop P; Zhu G; Hasa-Moreno A; Melton Witt J; Loo C; Krimm S; Pios A; Yu J; Brown C; Lee JK; Stroud R; Rajpal A; Shelton D
    J Biol Chem; 2016 Jun; 291(23):12254-70. PubMed ID: 27129281
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular determinants of potent P2X2 antagonism identified by functional analysis, mutagenesis, and homology docking.
    Wolf C; Rosefort C; Fallah G; Kassack MU; Hamacher A; Bodnar M; Wang H; Illes P; Kless A; Bahrenberg G; Schmalzing G; Hausmann R
    Mol Pharmacol; 2011 Apr; 79(4):649-61. PubMed ID: 21191044
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular basis of selective antagonism of the P2X1 receptor for ATP by NF449 and suramin: contribution of basic amino acids in the cysteine-rich loop.
    El-Ajouz S; Ray D; Allsopp RC; Evans RJ
    Br J Pharmacol; 2012 Jan; 165(2):390-400. PubMed ID: 21671897
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extracellular histidine residues identify common structural determinants in the copper/zinc P2X2 receptor modulation.
    Lorca RA; Coddou C; Gazitúa MC; Bull P; Arredondo C; Huidobro-Toro JP
    J Neurochem; 2005 Oct; 95(2):499-512. PubMed ID: 16190872
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contribution of extracellular negatively charged residues to ATP action and zinc modulation of rat P2X2 receptors.
    Friday SC; Hume RI
    J Neurochem; 2008 May; 105(4):1264-75. PubMed ID: 18194442
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of a distinct desensitisation gate in the ATP-gated P2X2 receptor.
    Stavrou A; Evans RJ; Schmid R
    Biochem Biophys Res Commun; 2020 Feb; 523(1):190-195. PubMed ID: 31843194
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct gating of ATP-activated ion channels (P2X2 receptors) by lipophilic attachment at the outer end of the second transmembrane domain.
    Rothwell SW; Stansfeld PJ; Bragg L; Verkhratsky A; North RA
    J Biol Chem; 2014 Jan; 289(2):618-26. PubMed ID: 24273165
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flexible subunit stoichiometry of functional human P2X2/3 heteromeric receptors.
    Kowalski M; Hausmann R; Schmid J; Dopychai A; Stephan G; Tang Y; Schmalzing G; Illes P; Rubini P
    Neuropharmacology; 2015 Dec; 99():115-30. PubMed ID: 26184350
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ATP binding site mutagenesis reveals different subunit stoichiometry of functional P2X2/3 and P2X2/6 receptors.
    Hausmann R; Bodnar M; Woltersdorf R; Wang H; Fuchs M; Messemer N; Qin Y; Günther J; Riedel T; Grohmann M; Nieber K; Schmalzing G; Rubini P; Illes P
    J Biol Chem; 2012 Apr; 287(17):13930-43. PubMed ID: 22378790
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optical control of trimeric P2X receptors and acid-sensing ion channels.
    Browne LE; Nunes JP; Sim JA; Chudasama V; Bragg L; Caddick S; North RA
    Proc Natl Acad Sci U S A; 2014 Jan; 111(1):521-6. PubMed ID: 24367083
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Histidine 140 plays a key role in the inhibitory modulation of the P2X4 nucleotide receptor by copper but not zinc.
    Coddou C; Morales B; González J; Grauso M; Gordillo F; Bull P; Rassendren F; Huidobro-Toro JP
    J Biol Chem; 2003 Sep; 278(38):36777-85. PubMed ID: 12819199
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Opposite effects of zinc on human and rat P2X2 receptors.
    Tittle RK; Hume RI
    J Neurosci; 2008 Oct; 28(44):11131-40. PubMed ID: 18971456
    [TBL] [Abstract][Full Text] [Related]  

  • 20. P2X purinergic receptor knockout mice reveal endogenous ATP modulation of both vasopressin and oxytocin release from the intact neurohypophysis.
    Custer EE; Knott TK; Cuadra AE; Ortiz-Miranda S; Lemos JR
    J Neuroendocrinol; 2012 Apr; 24(4):674-80. PubMed ID: 22340257
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.