BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

559 related articles for article (PubMed ID: 22558083)

  • 1. Fatty acid composition of developing sea buckthorn (Hippophae rhamnoides L.) berry and the transcriptome of the mature seed.
    Fatima T; Snyder CL; Schroeder WR; Cram D; Datla R; Wishart D; Weselake RJ; Krishna P
    PLoS One; 2012; 7(4):e34099. PubMed ID: 22558083
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fatty acid composition of lipids in sea buckthorn (Hippophaë rhamnoides L.) berries of different origins.
    Yang B; Kallio HP
    J Agric Food Chem; 2001 Apr; 49(4):1939-47. PubMed ID: 11308350
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tandem Mass Tag Based Quantitative Proteomics of Developing Sea Buckthorn Berries Reveals Candidate Proteins Related to Lipid Metabolism.
    Du W; Xiong CW; Ding J; Nybom H; Ruan CJ; Guo H
    J Proteome Res; 2019 May; 18(5):1958-1969. PubMed ID: 30990047
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fatty acids in berry lipids of six sea buckthorn (Hippophae rhamnoides L., subspecies carpatica) cultivars grown in Romania.
    Dulf FV
    Chem Cent J; 2012 Sep; 6(1):106. PubMed ID: 22995716
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RNA-seq data reveals a coordinated regulation mechanism of multigenes involved in the high accumulation of palmitoleic acid and oil in sea buckthorn berry pulp.
    Ding J; Ruan C; Du W; Guan Y
    BMC Plant Biol; 2019 May; 19(1):207. PubMed ID: 31109294
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of triacylglycerols of seeds and berries of sea buckthorn (Hippophaë rhamnoides) of different origins by mass spectrometry and tandem mass spectrometry.
    Yang B; Kallio H
    Lipids; 2006 Apr; 41(4):381-92. PubMed ID: 16808152
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diversity in sea buckthorn (Hippophae rhamnoides L.) accessions with different origins based on morphological characteristics, oil traits, and microsatellite markers.
    Li H; Ruan C; Ding J; Li J; Wang L; Tian X
    PLoS One; 2020; 15(3):e0230356. PubMed ID: 32168329
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolite profiling and expression analysis of flavonoid, vitamin C and tocopherol biosynthesis genes in the antioxidant-rich sea buckthorn (Hippophae rhamnoides L.).
    Fatima T; Kesari V; Watt I; Wishart D; Todd JF; Schroeder WR; Paliyath G; Krishna P
    Phytochemistry; 2015 Oct; 118():181-91. PubMed ID: 26318327
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of harvest time on the quality of oil-based compounds in sea buckthorn (Hippophae rhamnoides L. ssp. sinensis) seed and fruit.
    St George SD; Cenkowski S
    J Agric Food Chem; 2007 Oct; 55(20):8054-61. PubMed ID: 17760409
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of chemical constitute, fatty acids and antioxidant activity of the fruit and seed of sea buckthorn (Hippophae rhamnoides L.) grown wild in Iran.
    Saeidi K; Alirezalu A; Akbari Z
    Nat Prod Res; 2016; 30(3):366-8. PubMed ID: 26214249
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Elemental and nutritional analysis of sea buckthorn (Hippophae rhamnoides ssp. turkestanica) Berries of Pakistani origin.
    Sabir SM; Maqsood H; Hayat I; Khan MQ; Khaliq A
    J Med Food; 2005; 8(4):518-22. PubMed ID: 16379565
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Secoisolariciresinol and matairesinol of sea buckthorn (Hippophaë rhamnoides L.) berries of different subspecies and harvesting times.
    Yang B; Linko AM; Adlercreutz H; Kallio H
    J Agric Food Chem; 2006 Oct; 54(21):8065-70. PubMed ID: 17032010
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of Sea-Buckthorn (Hippophaë rhamnoides L.) Pulp Oil Consumption on Fatty Acids and Vitamin A and E Accumulation in Adipose Tissue and Liver of Rats.
    Czaplicki S; Ogrodowska D; Zadernowski R; Konopka I
    Plant Foods Hum Nutr; 2017 Jun; 72(2):198-204. PubMed ID: 28466134
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Abundance of active ingredients in sea-buckthorn oil.
    Zielińska A; Nowak I
    Lipids Health Dis; 2017 May; 16(1):95. PubMed ID: 28526097
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Untargeted metabolic fingerprinting reveals impact of growth stage and location on composition of sea buckthorn (Hippophaë rhamnoides) leaves.
    Pariyani R; Kortesniemi M; Liimatainen J; Sinkkonen J; Yang B
    J Food Sci; 2020 Feb; 85(2):364-373. PubMed ID: 31976552
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The impact of sea buckthorn oil fatty acids on human health.
    Solà Marsiñach M; Cuenca AP
    Lipids Health Dis; 2019 Jun; 18(1):145. PubMed ID: 31228942
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phenolic composition and bioactivities of sea buckthorn (Hippophae rhamnoides L.) fruit and seeds: an unconventional source of natural antioxidants in North America.
    Danielski R; Shahidi F
    J Sci Food Agric; 2024 Jul; 104(9):5553-5564. PubMed ID: 38358042
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Triacylglycerols, glycerophospholipids, tocopherols, and tocotrienols in berries and seeds of two subspecies (ssp. sinensis and mongolica) of Sea Buckthorn (Hippophaë rhamnoides).
    Kallio H; Yang B; Peippo P; Tahvonen R; Pan R
    J Agric Food Chem; 2002 May; 50(10):3004-9. PubMed ID: 11982433
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization and identification of ISSR markers associated with oil content in sea buckthorn berries.
    Ding J; Ruan CJ; Guan Y; Shan JY; Li H; Bao YH
    Genet Mol Res; 2016 Aug; 15(3):. PubMed ID: 27706577
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fatty acid composition of developing tree peony (Paeonia section Moutan DC.) seeds and transcriptome analysis during seed development.
    Li SS; Wang LS; Shu QY; Wu J; Chen LG; Shao S; Yin DD
    BMC Genomics; 2015 Mar; 16(1):208. PubMed ID: 25887415
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.