BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 22558100)

  • 21. A comprehensive sensitivity analysis of microarray breast cancer classification under feature variability.
    Sontrop HM; Moerland PD; van den Ham R; Reinders MJ; Verhaegh WF
    BMC Bioinformatics; 2009 Nov; 10():389. PubMed ID: 19941644
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Identification of key genes relevant to the prognosis of ER-positive and ER-negative breast cancer based on a prognostic prediction system.
    Xiao B; Hang J; Lei T; He Y; Kuang Z; Wang L; Chen L; He J; Zhang W; Liao Y; Sun Z; Li L
    Mol Biol Rep; 2019 Apr; 46(2):2111-2119. PubMed ID: 30888555
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Many accurate small-discriminatory feature subsets exist in microarray transcript data: biomarker discovery.
    Grate LR
    BMC Bioinformatics; 2005 Apr; 6():97. PubMed ID: 15826317
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparative evaluation of set-level techniques in predictive classification of gene expression samples.
    Holec M; Kléma J; Zelezný F; Tolar J
    BMC Bioinformatics; 2012 Jun; 13 Suppl 10(Suppl 10):S15. PubMed ID: 22759420
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Network-based biomarkers enhance classical approaches to prognostic gene expression signatures.
    Barter RL; Schramm SJ; Mann GJ; Yang YH
    BMC Syst Biol; 2014; 8 Suppl 4(Suppl 4):S5. PubMed ID: 25521200
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Module-based outcome prediction using breast cancer compendia.
    van Vliet MH; Klijn CN; Wessels LF; Reinders MJ
    PLoS One; 2007 Oct; 2(10):e1047. PubMed ID: 17940611
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Feature selection and classification of MAQC-II breast cancer and multiple myeloma microarray gene expression data.
    Liu Q; Sung AH; Chen Z; Liu J; Huang X; Deng Y
    PLoS One; 2009 Dec; 4(12):e8250. PubMed ID: 20011240
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Integration of RNA-Seq data with heterogeneous microarray data for breast cancer profiling.
    Castillo D; Gálvez JM; Herrera LJ; Román BS; Rojas F; Rojas I
    BMC Bioinformatics; 2017 Nov; 18(1):506. PubMed ID: 29157215
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Identification of key molecular targets that correlate with breast cancer through bioinformatic methods.
    Tang W; Guo X; Niu L; Song D; Han B; Zhang H
    J Gene Med; 2020 Mar; 22(3):e3141. PubMed ID: 31697007
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Class prediction for high-dimensional class-imbalanced data.
    Blagus R; Lusa L
    BMC Bioinformatics; 2010 Oct; 11():523. PubMed ID: 20961420
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Accurate molecular classification of cancer using simple rules.
    Wang X; Gotoh O
    BMC Med Genomics; 2009 Oct; 2():64. PubMed ID: 19874631
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cross-platform analysis of cancer microarray data improves gene expression based classification of phenotypes.
    Warnat P; Eils R; Brors B
    BMC Bioinformatics; 2005 Nov; 6():265. PubMed ID: 16271137
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Integrating biological knowledge with gene expression profiles for survival prediction of cancer.
    Chen X; Wang L
    J Comput Biol; 2009 Feb; 16(2):265-78. PubMed ID: 19183004
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Significant random signatures reveals new biomarker for breast cancer.
    Saberi Ansar E; Eslahchii C; Rahimi M; Geranpayeh L; Ebrahimi M; Aghdam R; Kerdivel G
    BMC Med Genomics; 2019 Nov; 12(1):160. PubMed ID: 31703592
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Development and Validation of an Individualized Immune Prognostic Signature for Recurrent Prostate Cancer.
    Jin Y; Wang L; Lou H; Song C; He X; Ding M
    Comb Chem High Throughput Screen; 2021; 24(1):98-108. PubMed ID: 32593277
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Integrated network analysis and machine learning approach for the identification of key genes of triple-negative breast cancer.
    Naorem LD; Muthaiyan M; Venkatesan A
    J Cell Biochem; 2019 Apr; 120(4):6154-6167. PubMed ID: 30302816
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Improved prediction of breast cancer outcome by identifying heterogeneous biomarkers.
    Choi J; Park S; Yoon Y; Ahn J
    Bioinformatics; 2017 Nov; 33(22):3619-3626. PubMed ID: 28961949
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Feature selection and molecular classification of cancer using genetic programming.
    Yu J; Yu J; Almal AA; Dhanasekaran SM; Ghosh D; Worzel WP; Chinnaiyan AM
    Neoplasia; 2007 Apr; 9(4):292-303. PubMed ID: 17460773
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A comprehensive analysis of prognostic signatures reveals the high predictive capacity of the proliferation, immune response and RNA splicing modules in breast cancer.
    Reyal F; van Vliet MH; Armstrong NJ; Horlings HM; de Visser KE; Kok M; Teschendorff AE; Mook S; van 't Veer L; Caldas C; Salmon RJ; van de Vijver MJ; Wessels LF
    Breast Cancer Res; 2008; 10(6):R93. PubMed ID: 19014521
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Identification of Genes with Prognostic Value in the Breast Cancer Microenvironment Using Bioinformatics Analysis.
    Ren H; Hu D; Mao Y; Su X
    Med Sci Monit; 2020 Apr; 26():e920212. PubMed ID: 32251269
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.