These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 22558166)

  • 21. Patterns of migrating soaring migrants indicate attraction to marine wind farms.
    Skov H; Desholm M; Heinänen S; Kahlert JA; Laubek B; Jensen NE; Žydelis R; Jensen BP
    Biol Lett; 2016 Dec; 12(12):. PubMed ID: 28003522
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Soaring energetics and glide performance in a moving atmosphere.
    Taylor GK; Reynolds KV; Thomas AL
    Philos Trans R Soc Lond B Biol Sci; 2016 Sep; 371(1704):. PubMed ID: 27528788
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Migratory flight strategies of Levant sparrowhawks: time or energy minimization?
    Spaar R; Stark H; Liechti F
    Anim Behav; 1998 Nov; 56(5):1185-1197. PubMed ID: 9819335
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Genetic determination of migration strategies in large soaring birds: evidence from hybrid eagles.
    Väli Ü; Mirski P; Sellis U; Dagys M; Maciorowski G
    Proc Biol Sci; 2018 Aug; 285(1884):. PubMed ID: 30111595
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Novel step selection analyses on energy landscapes reveal how linear features alter migrations of soaring birds.
    Eisaguirre JM; Booms TL; Barger CP; Lewis SB; Breed GA
    J Anim Ecol; 2020 Nov; 89(11):2567-2583. PubMed ID: 32926415
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Minimizing collision risk between migrating raptors and marine wind farms: development of a spatial planning tool.
    Baisner AJ; Andersen JL; Findsen A; Yde Granath SW; Madsen KO; Desholm M
    Environ Manage; 2010 Nov; 46(5):801-8. PubMed ID: 20711780
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Wind turbines cause functional habitat loss for migratory soaring birds.
    Marques AT; Santos CD; Hanssen F; Muñoz AR; Onrubia A; Wikelski M; Moreira F; Palmeirim JM; Silva JP
    J Anim Ecol; 2020 Jan; 89(1):93-103. PubMed ID: 30762229
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sex-specific effects of wind on the flight decisions of a sexually dimorphic soaring bird.
    Clay TA; Joo R; Weimerskirch H; Phillips RA; den Ouden O; Basille M; Clusella-Trullas S; Assink JD; Patrick SC
    J Anim Ecol; 2020 Aug; 89(8):1811-1823. PubMed ID: 32557603
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The roller coaster flight strategy of bar-headed geese conserves energy during Himalayan migrations.
    Bishop CM; Spivey RJ; Hawkes LA; Batbayar N; Chua B; Frappell PB; Milsom WK; Natsagdorj T; Newman SH; Scott GR; Takekawa JY; Wikelski M; Butler PJ
    Science; 2015 Jan; 347(6219):250-4. PubMed ID: 25593180
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Gliding flight: drag and torque of a hawk and a falcon with straight and turned heads, and a lower value for the parasite drag coefficient.
    Tucker VA
    J Exp Biol; 2000 Dec; 203(Pt 24):3733-44. PubMed ID: 11076737
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Combined use of tri-axial accelerometers and GPS reveals the flexible foraging strategy of a bird in relation to weather conditions.
    Hernández-Pliego J; Rodríguez C; Dell'Omo G; Bustamante J
    PLoS One; 2017; 12(6):e0177892. PubMed ID: 28591181
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Wind effects on the migration routes of trans-Saharan soaring raptors: geographical, seasonal, and interspecific variation.
    Vidal-Mateo J; Mellone U; López-López P; La Puente J; García-Ripollés C; Bermejo A; Urios V
    Curr Zool; 2016 Apr; 62(2):89-97. PubMed ID: 29491895
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Soaring migratory birds avoid wind farm in the Isthmus of Tehuantepec, southern Mexico.
    Villegas-Patraca R; Cabrera-Cruz SA; Herrera-Alsina L
    PLoS One; 2014; 9(3):e92462. PubMed ID: 24647442
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Emulating avian orographic soaring with a small autonomous glider.
    Fisher A; Marino M; Clothier R; Watkins S; Peters L; Palmer JL
    Bioinspir Biomim; 2015 Dec; 11(1):016002. PubMed ID: 26674126
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Efficiency of lift production in flapping and gliding flight of swifts.
    Henningsson P; Hedenström A; Bomphrey RJ
    PLoS One; 2014; 9(2):e90170. PubMed ID: 24587260
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Energy beyond food: foraging theory informs time spent in thermals by a large soaring bird.
    Shepard EL; Lambertucci SA; Vallmitjana D; Wilson RP
    PLoS One; 2011; 6(11):e27375. PubMed ID: 22087301
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Flap or soar? How a flight generalist responds to its aerial environment.
    Shamoun-Baranes J; Bouten W; van Loon EE; Meijer C; Camphuysen CJ
    Philos Trans R Soc Lond B Biol Sci; 2016 Sep; 371(1704):. PubMed ID: 27528785
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Behavioural adaptations to flight into thin air.
    Sherub S; Bohrer G; Wikelski M; Weinzierl R
    Biol Lett; 2016 Oct; 12(10):. PubMed ID: 28120805
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The gateway to Africa: What determines sea crossing performance of a migratory soaring bird at the Strait of Gibraltar?
    Santos CD; Silva JP; Muñoz AR; Onrubia A; Wikelski M
    J Anim Ecol; 2020 Jun; 89(6):1317-1328. PubMed ID: 32144757
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Physical limits of flight performance in the heaviest soaring bird.
    Williams HJ; Shepard ELC; Holton MD; Alarcón PAE; Wilson RP; Lambertucci SA
    Proc Natl Acad Sci U S A; 2020 Jul; 117(30):17884-17890. PubMed ID: 32661147
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.