These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 22558194)

  • 1. L1pred: a sequence-based prediction tool for catalytic residues in enzymes with the L1-logreg classifier.
    Dou Y; Wang J; Yang J; Zhang C
    PLoS One; 2012; 7(4):e35666. PubMed ID: 22558194
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PREvaIL, an integrative approach for inferring catalytic residues using sequence, structural, and network features in a machine-learning framework.
    Song J; Li F; Takemoto K; Haffari G; Akutsu T; Chou KC; Webb GI
    J Theor Biol; 2018 Apr; 443():125-137. PubMed ID: 29408627
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of catalytic residues using Support Vector Machine with selected protein sequence and structural properties.
    Petrova NV; Wu CH
    BMC Bioinformatics; 2006 Jun; 7():312. PubMed ID: 16790052
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CSmetaPred: a consensus method for prediction of catalytic residues.
    Choudhary P; Kumar S; Bachhawat AK; Pandit SB
    BMC Bioinformatics; 2017 Dec; 18(1):583. PubMed ID: 29273005
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sequence-based prediction of protein-protein interaction sites with L1-logreg classifier.
    Dhole K; Singh G; Pai PP; Mondal S
    J Theor Biol; 2014 May; 348():47-54. PubMed ID: 24486250
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accurate sequence-based prediction of catalytic residues.
    Zhang T; Zhang H; Chen K; Shen S; Ruan J; Kurgan L
    Bioinformatics; 2008 Oct; 24(20):2329-38. PubMed ID: 18710875
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RSARF: prediction of residue solvent accessibility from protein sequence using random forest method.
    Pugalenthi G; Kandaswamy KK; Chou KC; Vivekanandan S; Kolatkar P
    Protein Pept Lett; 2012 Jan; 19(1):50-6. PubMed ID: 21919860
    [TBL] [Abstract][Full Text] [Related]  

  • 8. EXIA2: web server of accurate and rapid protein catalytic residue prediction.
    Lu CH; Yu CS; Chien YT; Huang SW
    Biomed Res Int; 2014; 2014():807839. PubMed ID: 25295274
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accurate prediction of protein catalytic residues by side chain orientation and residue contact density.
    Chien YT; Huang SW
    PLoS One; 2012; 7(10):e47951. PubMed ID: 23110141
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of catalytic residues from protein structure using support vector machine with sequence and structural features.
    Pugalenthi G; Kumar KK; Suganthan PN; Gangal R
    Biochem Biophys Res Commun; 2008 Mar; 367(3):630-4. PubMed ID: 18206645
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid catalytic template searching as an enzyme function prediction procedure.
    Nilmeier JP; Kirshner DA; Wong SE; Lightstone FC
    PLoS One; 2013; 8(5):e62535. PubMed ID: 23675414
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detection of protein catalytic residues at high precision using local network properties.
    Slama P; Filippis I; Lappe M
    BMC Bioinformatics; 2008 Dec; 9():517. PubMed ID: 19055796
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An improved prediction of catalytic residues in enzyme structures.
    Tang YR; Sheng ZY; Chen YZ; Zhang Z
    Protein Eng Des Sel; 2008 May; 21(5):295-302. PubMed ID: 18287176
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting and annotating catalytic residues: an information theoretic approach.
    Sterner B; Singh R; Berger B
    J Comput Biol; 2007 Oct; 14(8):1058-73. PubMed ID: 17887954
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sequence based residue depth prediction using evolutionary information and predicted secondary structure.
    Zhang H; Zhang T; Chen K; Shen S; Ruan J; Kurgan L
    BMC Bioinformatics; 2008 Sep; 9():388. PubMed ID: 18803867
    [TBL] [Abstract][Full Text] [Related]  

  • 16. LIBRUS: combined machine learning and homology information for sequence-based ligand-binding residue prediction.
    Kauffman C; Karypis G
    Bioinformatics; 2009 Dec; 25(23):3099-107. PubMed ID: 19786483
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein structure based prediction of catalytic residues.
    Fajardo JE; Fiser A
    BMC Bioinformatics; 2013 Feb; 14():63. PubMed ID: 23433045
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting enzyme functional surfaces and locating key residues automatically from structures.
    Tseng YY; Liang J
    Ann Biomed Eng; 2007 Jun; 35(6):1037-42. PubMed ID: 17294116
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Active site prediction using evolutionary and structural information.
    Sankararaman S; Sha F; Kirsch JF; Jordan MI; Sjölander K
    Bioinformatics; 2010 Mar; 26(5):617-24. PubMed ID: 20080507
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploring functionally related enzymes using radially distributed properties of active sites around the reacting points of bound ligands.
    Ueno K; Mineta K; Ito K; Endo T
    BMC Struct Biol; 2012 Apr; 12():5. PubMed ID: 22536854
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.