These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 22558226)

  • 1. Deep and clear optical imaging of thick inhomogeneous samples.
    Jorand R; Le Corre G; Andilla J; Maandhui A; Frongia C; Lobjois V; Ducommun B; Lorenzo C
    PLoS One; 2012; 7(4):e35795. PubMed ID: 22558226
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly Sensitive Shack-Hartmann Wavefront Sensor: Application to Non-Transparent Tissue Mimic Imaging with Adaptive Light-Sheet Fluorescence Microscopy.
    Morgado Brajones J; Clouvel G; Dovillaire G; Levecq X; Lorenzo C
    Methods Protoc; 2019 Jul; 2(3):. PubMed ID: 31336779
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Live imaging using adaptive optics with fluorescent protein guide-stars.
    Tao X; Crest J; Kotadia S; Azucena O; Chen DC; Sullivan W; Kubby J
    Opt Express; 2012 Jul; 20(14):15969-82. PubMed ID: 22772285
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D adaptive optics in a light sheet microscope.
    Bourgenot C; Saunter CD; Taylor JM; Girkin JM; Love GD
    Opt Express; 2012 Jun; 20(12):13252-61. PubMed ID: 22714353
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-contrast single-particle tracking by selective focal plane illumination microscopy.
    Ritter JG; Veith R; Siebrasse JP; Kubitscheck U
    Opt Express; 2008 May; 16(10):7142-52. PubMed ID: 18545417
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wavefront correction and high-resolution in vivo OCT imaging with an objective integrated multi-actuator adaptive lens.
    Bonora S; Jian Y; Zhang P; Zam A; Pugh EN; Zawadzki RJ; Sarunic MV
    Opt Express; 2015 Aug; 23(17):21931-41. PubMed ID: 26368169
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adaptive optics confocal microscopy using direct wavefront sensing.
    Tao X; Fernandez B; Azucena O; Fu M; Garcia D; Zuo Y; Chen DC; Kubby J
    Opt Lett; 2011 Apr; 36(7):1062-4. PubMed ID: 21478983
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct wavefront sensing in adaptive optical microscopy using backscattered light.
    Rahman SA; Booth MJ
    Appl Opt; 2013 Aug; 52(22):5523-32. PubMed ID: 23913074
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Shack-Hartmann wavefront sensing using interferometric focusing of light onto guide-stars.
    Tao X; Dean Z; Chien C; Azucena O; Bodington D; Kubby J
    Opt Express; 2013 Dec; 21(25):31282-92. PubMed ID: 24514702
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adaptive optics for structured illumination microscopy.
    Débarre D; Botcherby EJ; Booth MJ; Wilson T
    Opt Express; 2008 Jun; 16(13):9290-305. PubMed ID: 18575493
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Snapshot coherence-gated direct wavefront sensing for multi-photon microscopy.
    van Werkhoven TI; Antonello J; Truong HH; Verhaegen M; Gerritsen HC; Keller CU
    Opt Express; 2014 Apr; 22(8):9715-33. PubMed ID: 24787857
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comprehensive study of unexpected microscope condensers formed in sample arrangements commonly used in optical microscopy.
    Desai DB; Aldawsari MM; Alharbi BM; Sen S; Grave de Peralta L
    Appl Opt; 2015 Sep; 54(25):7781-8. PubMed ID: 26368905
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multimode fibre: Light-sheet microscopy at the tip of a needle.
    Plöschner M; Kollárová V; Dostál Z; Nylk J; Barton-Owen T; Ferrier DE; Chmelík R; Dholakia K; Čižmár T
    Sci Rep; 2015 Dec; 5():18050. PubMed ID: 26657400
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optical sectioning microscopy with planar or structured illumination.
    Mertz J
    Nat Methods; 2011 Sep; 8(10):811-9. PubMed ID: 21959136
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single-shot quantitative aberration and scattering length measurements in mouse brain tissues using an extended-source Shack-Hartmann wavefront sensor.
    Imperato S; Harms F; Hubert A; Mercier M; Bourdieu L; Fragola A
    Opt Express; 2022 Apr; 30(9):15250-15265. PubMed ID: 35473251
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pupil tracking with a Hartmann-Shack wavefront sensor.
    Arines J; Prado P; Bará S
    J Biomed Opt; 2010; 15(3):036022. PubMed ID: 20615024
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiphoton imaging microscopy at deeper layers with adaptive optics control of spherical aberration.
    Bueno JM; Skorsetz M; Palacios R; Gualda EJ; Artal P
    J Biomed Opt; 2014 Jan; 19(1):011007. PubMed ID: 23864036
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Algorithm and experiment of whole-aperture wavefront reconstruction from annular subaperture Hartmann-Shack gradient data.
    Xu H; Xian H; Zhang Y
    Opt Express; 2010 Jun; 18(13):13431-43. PubMed ID: 20588474
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Subcellular three-dimensional imaging deep through multicellular thick samples by structured illumination microscopy and adaptive optics.
    Lin R; Kipreos ET; Zhu J; Khang CH; Kner P
    Nat Commun; 2021 May; 12(1):3148. PubMed ID: 34035309
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adaptive optics for structured illumination microscopy based on deep learning.
    Zheng Y; Chen J; Wu C; Gong W; Si K
    Cytometry A; 2021 Jun; 99(6):622-631. PubMed ID: 33543823
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.