BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 22558341)

  • 21. Targeted conjugation of breast anticancer drug tamoxifen and its metabolites with synthetic polymers.
    Sanyakamdhorn S; Agudelo D; Bekale L; Tajmir-Riahi HA
    Colloids Surf B Biointerfaces; 2016 Sep; 145():55-63. PubMed ID: 27137803
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Review on the targeted conjugation of anticancer drugs doxorubicin and tamoxifen with synthetic polymers for drug delivery.
    Sanyakamdhorn S; Agudelo D; Tajmir-Riahi HA
    J Biomol Struct Dyn; 2017 Aug; 35(11):2497-2508. PubMed ID: 27598545
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In vitro and in vivo uptake studies of PAMAM G4.5 dendrimers in breast cancer.
    Oddone N; Lecot N; Fernández M; Rodriguez-Haralambides A; Cabral P; Cerecetto H; Benech JC
    J Nanobiotechnology; 2016 Jun; 14(1):45. PubMed ID: 27297021
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Binding analysis of antioxidant polyphenols with PAMAM nanoparticles.
    Chanphai P; Tajmir-Riahi HA
    J Biomol Struct Dyn; 2018 Oct; 36(13):3487-3495. PubMed ID: 29019428
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Low systemic toxicity nanocarriers fabricated from heparin-mPEG and PAMAM dendrimers for controlled drug release.
    Thanh VM; Nguyen TH; Tran TV; Ngoc UP; Ho MN; Nguyen TT; Chau YNT; Le VT; Tran NQ; Nguyen CK; Nguyen DH
    Mater Sci Eng C Mater Biol Appl; 2018 Jan; 82():291-298. PubMed ID: 29025661
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structural analysis of doxorubicin-polymer conjugates.
    Sanyakamdhorn S; Bekale L; Agudelo D; Tajmir-Riahi HA
    Colloids Surf B Biointerfaces; 2015 Nov; 135():175-182. PubMed ID: 26255162
    [TBL] [Abstract][Full Text] [Related]  

  • 27. mPEG-PAMAM-G4 nucleic acid nanocomplexes: enhanced stability, RNase protection, and activity of splice switching oligomer and poly I:C RNA.
    Reyes-Reveles J; Sedaghat-Herati R; Gilley DR; Schaeffer AM; Ghosh KC; Greene TD; Gann HE; Dowler WA; Kramer S; Dean JM; Delong RK
    Biomacromolecules; 2013 Nov; 14(11):4108-15. PubMed ID: 24164501
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Binding efficacy of tRNA with folic acid-PAMAM nanoparticles.
    Chanphai P; Tajmir-Riahi HA
    Int J Biol Macromol; 2018 Jul; 114():851-854. PubMed ID: 29621502
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Atomic level insights into realistic molecular models of dendrimer-drug complexes through MD simulations.
    Jain V; Maiti PK; Bharatam PV
    J Chem Phys; 2016 Sep; 145(12):124902. PubMed ID: 27782646
    [TBL] [Abstract][Full Text] [Related]  

  • 30. DNA compaction by a dendrimer.
    Nandy B; Maiti PK
    J Phys Chem B; 2011 Jan; 115(2):217-30. PubMed ID: 21171620
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Targeting Breast Cancer Cells with G4 PAMAM Dendrimers and Valproic Acid Derivative Complexes.
    Muñoz AM; Fragoso-Vázquez MJ; Martel BP; Chávez-Blanco A; Dueñas-González A; R García-Sánchez J; Bello M; Romero-Castro A; Correa-Basurto J
    Anticancer Agents Med Chem; 2020; 20(15):1857-1872. PubMed ID: 32324521
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Complex formation between endogenous toxin bilirubin and polyamidoamine dendrimers: a spectroscopic study.
    Shcharbin D; Bryszewska M
    Biochim Biophys Acta; 2006 Jul; 1760(7):1021-6. PubMed ID: 16716522
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Conjugation of steroids with PAMAM nanoparticles.
    Chanphai P; Bekale L; Tajmir-Riahi HA
    Colloids Surf B Biointerfaces; 2015 Dec; 136():1035-41. PubMed ID: 26590896
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Spectroscopic and molecular modeling studies of the interaction between morin and polyamidoamine dendrimer.
    Zhang H; Cao J; Wang Y
    Luminescence; 2014 Sep; 29(6):573-8. PubMed ID: 24108475
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Transcorneal iontophoresis of dendrimers: PAMAM corneal penetration and dexamethasone delivery.
    Souza JG; Dias K; Silva SA; de Rezende LC; Rocha EM; Emery FS; Lopez RF
    J Control Release; 2015 Feb; 200():115-24. PubMed ID: 25553828
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Spectroscopic and calorimetric studies on the interaction between PAMAM G4-OH and 5-fluorouracil in aqueous solutions.
    Buczkowski A; Urbaniak P; Piekarski H; Palecz B
    Spectrochim Acta A Mol Biomol Spectrosc; 2017 Jan; 171():401-405. PubMed ID: 27569773
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Poly(amidoamine) dendrimers as skin penetration enhancers: Influence of charge, generation, and concentration.
    Venuganti VV; Perumal OP
    J Pharm Sci; 2009 Jul; 98(7):2345-56. PubMed ID: 18937369
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Poly(amido amine) dendrimers as absorption enhancers for oral delivery of camptothecin.
    Sadekar S; Thiagarajan G; Bartlett K; Hubbard D; Ray A; McGill LD; Ghandehari H
    Int J Pharm; 2013 Nov; 456(1):175-85. PubMed ID: 23933439
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The influence of PAMAM dendrimers surface groups on their interaction with porcine pepsin.
    Ciolkowski M; Rozanek M; Bryszewska M; Klajnert B
    Biochim Biophys Acta; 2013 Oct; 1834(10):1982-7. PubMed ID: 23851144
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Interaction of polyamidoamine (PAMAM) succinamic acid dendrimers generation 4 with human serum albumin.
    Sekowski S; Buczkowski A; Palecz B; Gabryelak T
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Oct; 81(1):706-10. PubMed ID: 21788153
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.