BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

61 related articles for article (PubMed ID: 22558767)

  • 1. New insights on the role of root radial hydraulic conductivity in the overall water uptake dynamics.
    Lobet G; Draye X
    Commun Agric Appl Biol Sci; 2012; 77(1):117-21. PubMed ID: 22558767
    [No Abstract]   [Full Text] [Related]  

  • 2. The significance of roots as hydraulic rheostats.
    Maurel C; Simonneau T; Sutka M
    J Exp Bot; 2010 Jul; 61(12):3191-8. PubMed ID: 20522526
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydraulic conductivity of soil-grown lupine and maize unbranched roots and maize root-shoot junctions.
    Meunier F; Zarebanadkouki M; Ahmed MA; Carminati A; Couvreur V; Javaux M
    J Plant Physiol; 2018 Aug; 227():31-44. PubMed ID: 29395124
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison between gradient-dependent hydraulic conductivities of roots using the root pressure probe: the role of pressure propagations and implications for the relative roles of parallel radial pathways.
    Bramley H; Turner NC; Turner DW; Tyerman SD
    Plant Cell Environ; 2007 Jul; 30(7):861-74. PubMed ID: 17547657
    [TBL] [Abstract][Full Text] [Related]  

  • 5. During measurements of root hydraulics with pressure probes, the contribution of unstirred layers is minimized in the pressure relaxation mode: comparison with pressure clamp and high-pressure flowmeter.
    Knipfer T; Das D; Steudle E
    Plant Cell Environ; 2007 Jul; 30(7):845-60. PubMed ID: 17547656
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sensitivity of cell hydraulic conductivity to mercury is coincident with symplasmic isolation and expression of plasmalemma aquaporin genes in growing maize roots.
    Hukin D; Doering-Saad C; Thomas CR; Pritchard J
    Planta; 2002 Oct; 215(6):1047-56. PubMed ID: 12355166
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Root cortical aerenchyma improves the drought tolerance of maize (Zea mays L.).
    Zhu J; Brown KM; Lynch JP
    Plant Cell Environ; 2010 May; 33(5):740-9. PubMed ID: 20519019
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contractile roots in succulent monocots: convergence, divergence and adaptation to limited rainfall.
    North GB; Brinton EK; Garrett TY
    Plant Cell Environ; 2008 Aug; 31(8):1179-89. PubMed ID: 18507804
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydraulic conductance and K+ transport into the xylem depend on radial volume flow, rather than on xylem pressure, in roots of intact, transpiring maize seedlings.
    Wegner LH; Zimmermann U
    New Phytol; 2009 Jan; 181(2):361-373. PubMed ID: 19121033
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cavitation vulnerability in roots and shoots: does Populus euphratica Oliv., a poplar from arid areas of Central Asia, differ from other poplar species?
    Hukin D; Cochard H; Dreyer E; Le Thiec D; Bogeat-Triboulot MB
    J Exp Bot; 2005 Aug; 56(418):2003-10. PubMed ID: 15967780
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plant genetics. Getting to the root of drought responses.
    Pennisi E
    Science; 2008 Apr; 320(5873):173. PubMed ID: 18403687
    [No Abstract]   [Full Text] [Related]  

  • 12. The maximum height of grasses is determined by roots.
    Cao KF; Yang SJ; Zhang YJ; Brodribb TJ
    Ecol Lett; 2012 Jul; 15(7):666-72. PubMed ID: 22489611
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Variable conductivity and embolism in roots and branches of four contrasting tree species and their impacts on whole-plant hydraulic performance under future atmospheric CO₂ concentration.
    Domec JC; Schäfer K; Oren R; Kim HS; McCarthy HR
    Tree Physiol; 2010 Aug; 30(8):1001-15. PubMed ID: 20566583
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Maize lateral root developmental plasticity induced by mild water stress. I: Genotypic variation across a high-resolution series of water potentials.
    Dowd TG; Braun DM; Sharp RE
    Plant Cell Environ; 2019 Jul; 42(7):2259-2273. PubMed ID: 29981147
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Participation of myosin in root pumping activity.
    Zholkevich VN; Makhmud MT; Monakhova OF
    Dokl Biol Sci; 2000; 371():226-9. PubMed ID: 10833667
    [No Abstract]   [Full Text] [Related]  

  • 16. Root cap removal increases root penetration resistance in maize (Zea mays L).
    Iijima M; Higuchi T; Barlow PW; Bengough AG
    J Exp Bot; 2003 Sep; 54(390):2105-9. PubMed ID: 12885860
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Root pressurization affects growth-induced water potentials and growth in dehydrated maize leaves.
    Tang AC; Boyer JS
    J Exp Bot; 2003 Nov; 54(392):2479-88. PubMed ID: 14512379
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gating of aquaporins by low temperature in roots of chilling-sensitive cucumber and chilling-tolerant figleaf gourd.
    Lee SH; Chung GC; Steudle E
    J Exp Bot; 2005 Mar; 56(413):985-95. PubMed ID: 15734792
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of root pressurization on water relations, shoot growth, and leaf gas exchange of peach (Prunus persica) trees on rootstocks with differing growth potential and hydraulic conductance.
    Solari LI; DeJong TM
    J Exp Bot; 2006; 57(9):1981-9. PubMed ID: 16690626
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Uptake and accumulation of copper by roots and shoots of maize (Zea mays L.).
    Liu DH; Jiang WS; Hou WQ
    J Environ Sci (China); 2001 Apr; 13(2):228-32. PubMed ID: 11590748
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.