These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 22558838)

  • 1. Prediction of backside micromotion in total knee replacements by finite element simulation.
    O'Brien S; Luo Y; Wu C; Petrak M; Bohm E; Brandt JM
    Proc Inst Mech Eng H; 2012 Mar; 226(3):235-45. PubMed ID: 22558838
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Current Total Knee Designs: Does Baseplate Roughness or Locking Mechanism Design Affect Polyethylene Backside Wear?
    Sisko ZW; Teeter MG; Lanting BA; Howard JL; McCalden RW; Naudie DD; MacDonald SJ; Vasarhelyi EM
    Clin Orthop Relat Res; 2017 Dec; 475(12):2970-2980. PubMed ID: 28905208
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Backside wear of modular ultra-high molecular weight polyethylene tibial inserts.
    Conditt MA; Ismaily SK; Alexander JW; Noble PC
    J Bone Joint Surg Am; 2004 May; 86(5):1031-7. PubMed ID: 15118049
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A circumferentially flanged tibial tray minimizes bone-tray shear micromotion.
    Barker DS; Tanner KE; Ryd L
    Proc Inst Mech Eng H; 2005 Nov; 219(6):449-56. PubMed ID: 16312104
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Does increased topside conformity in modular total knee arthroplasty lead to increased backside wear?
    Schwarzkopf R; Scott RD; Carlson EM; Currier JH
    Clin Orthop Relat Res; 2015 Jan; 473(1):220-5. PubMed ID: 24777725
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Peripheral snap-fit locking mechanisms and smooth surface finish of tibial trays reduce backside wear in fixed-bearing total knee arthroplasty.
    Łapaj Ł; Mróz A; Kokoszka P; Markuszewski J; Wendland J; Helak-Łapaj C; Kruczyński J
    Acta Orthop; 2017 Feb; 88(1):62-69. PubMed ID: 27781667
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tibial interface wear in retrieved total knee components and correlations with modular insert motion.
    Rao AR; Engh GA; Collier MB; Lounici S
    J Bone Joint Surg Am; 2002 Oct; 84(10):1849-55. PubMed ID: 12377918
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Material and surface factors influencing backside fretting wear in total knee replacement tibial components.
    Billi F; Sangiorgio SN; Aust S; Ebramzadeh E
    J Biomech; 2010 May; 43(7):1310-5. PubMed ID: 20172525
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The causes of insert backside wear in total knee arthroplasty.
    Wasielewski RC
    Clin Orthop Relat Res; 2002 Nov; (404):232-46. PubMed ID: 12439265
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Patient-specific unicompartmental knee resurfacing arthroplasty: use of a novel interference lock to reduce tibial insert micromotion and backside wear.
    Steklov N; Chao N; Srivastav S
    Open Biomed Eng J; 2010 Aug; 4():156-61. PubMed ID: 21464910
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polyethylene subluxation: a radiographic sign of locking mechanism failure after modular total knee arthroplasty.
    Hepinstall MS; Rodriguez JA
    J Arthroplasty; 2011 Jan; 26(1):98-102. PubMed ID: 20137887
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contribution of micro-motion to backside wear in a fixed bearing total knee arthroplasty.
    Levine RA; Lewicki KA; Currier JH; Mayor MB; Van Citters DW
    J Orthop Res; 2016 Nov; 34(11):1933-1940. PubMed ID: 26970078
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Backside wear of polyethylene tibial inserts: mechanism and magnitude of material loss.
    Conditt MA; Thompson MT; Usrey MM; Ismaily SK; Noble PC
    J Bone Joint Surg Am; 2005 Feb; 87(2):326-31. PubMed ID: 15687155
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tibial insert undersurface as a contributing source of polyethylene wear debris.
    Wasielewski RC; Parks N; Williams I; Surprenant H; Collier JP; Engh G
    Clin Orthop Relat Res; 1997 Dec; (345):53-9. PubMed ID: 9418621
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Validation of model-predicted tibial tray-synthetic bone relative motion in cementless total knee replacement during activities of daily living.
    Navacchia A; Clary CW; Wilson HL; Behnam YA; Rullkoetter PJ
    J Biomech; 2018 Aug; 77():115-123. PubMed ID: 30006236
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computationally efficient prediction of bone-implant interface micromotion of a cementless tibial tray during gait.
    Fitzpatrick CK; Hemelaar P; Taylor M
    J Biomech; 2014 May; 47(7):1718-26. PubMed ID: 24642351
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment of backside wear from the analysis of 55 retrieved tibial inserts.
    Li S; Scuderi G; Furman BD; Bhattacharyya S; Schmieg JJ; Insall JN
    Clin Orthop Relat Res; 2002 Nov; (404):75-82. PubMed ID: 12439241
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The influence of design, materials and kinematics on the in vitro wear of total knee replacements.
    McEwen HM; Barnett PI; Bell CJ; Farrar R; Auger DD; Stone MH; Fisher J
    J Biomech; 2005 Feb; 38(2):357-65. PubMed ID: 15598464
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting knee replacement damage in a simulator machine using a computational model with a consistent wear factor.
    Zhao D; Sakoda H; Sawyer WG; Banks SA; Fregly BJ
    J Biomech Eng; 2008 Feb; 130(1):011004. PubMed ID: 18298180
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of interference assembly of a tibial insert on the tibiofemoral contact mechanics in total knee replacement.
    Chen Z; Zhang J; Gao Y; Chen S; Zhang X; Jin Z
    Proc Inst Mech Eng H; 2019 Sep; 233(9):948-953. PubMed ID: 31234760
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.