BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 22559170)

  • 1. Oriented immobilization of proteins on hydroxyapatite surface using bifunctional bisphosphonates as linkers.
    Yewle JN; Wei Y; Puleo DA; Daunert S; Bachas LG
    Biomacromolecules; 2012 Jun; 13(6):1742-9. PubMed ID: 22559170
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bifunctional bisphosphonates for delivering PTH (1-34) to bone mineral with enhanced bioactivity.
    Yewle JN; Puleo DA; Bachas LG
    Biomaterials; 2013 Apr; 34(12):3141-9. PubMed ID: 23369219
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Immobilization of the enzyme beta-lactamase on biotin-derivatized poly(L-lysine)-g-poly(ethylene glycol)-coated sensor chips: a study on oriented attachment and surface activity by enzyme kinetics and in situ optical sensing.
    Zhen G; Eggli V; Vörös J; Zammaretti P; Textor M; Glockshuber R; Kuennemann E
    Langmuir; 2004 Nov; 20(24):10464-73. PubMed ID: 15544374
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calmodulin-mediated reversible immobilization of enzymes.
    Daunert S; Bachas LG; Schauer-Vukasinovic V; Gregory KJ; Schrift G; Deo S
    Colloids Surf B Biointerfaces; 2007 Jul; 58(1):20-7. PubMed ID: 17276043
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced bone morphogenetic protein-2 performance on hydroxyapatite ceramic surfaces.
    Schuessele A; Mayr H; Tessmar J; Goepferich A
    J Biomed Mater Res A; 2009 Sep; 90(4):959-71. PubMed ID: 18655137
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional glass surface displaying a glutamyl donor substrate for transglutaminase-mediated protein immobilization.
    Sung K; Kamiya N; Kawata N; Kamiya S; Goto M
    Biotechnol J; 2010 May; 5(5):456-62. PubMed ID: 20222105
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploring enzymatic catalysis at a solid surface: a case study with transglutaminase-mediated protein immobilization.
    Tanaka Y; Tsuruda Y; Nishi M; Kamiya N; Goto M
    Org Biomol Chem; 2007 Jun; 5(11):1764-70. PubMed ID: 17520145
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modulation of the distribution of small proteins within porous matrixes by smart-control of the immobilization rate.
    Bolivar JM; Hidalgo A; Sánchez-Ruiloba L; Berenguer J; Guisán JM; López-Gallego F
    J Biotechnol; 2011 Oct; 155(4):412-20. PubMed ID: 21839786
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional immobilization and patterning of proteins by an enzymatic transfer reaction.
    Waichman S; Bhagawati M; Podoplelova Y; Reichel A; Brunk A; Paterok D; Piehler J
    Anal Chem; 2010 Feb; 82(4):1478-85. PubMed ID: 20092261
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Degradable bisphosphonate-alkaline phosphatase-complexed hydroxyapatite implants in vitro.
    Denissen H; van Beek E; van den Bos T; de Blieck J; Klein C; van den Hooff A
    J Bone Miner Res; 1997 Feb; 12(2):290-7. PubMed ID: 9041063
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface-tethered protein switches.
    Zayats M; Kanwar M; Ostermeier M; Searson PC
    Chem Commun (Camb); 2011 Mar; 47(12):3398-400. PubMed ID: 21331440
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bacterial adhesion to bisphosphonate coated hydroxyapatite.
    Ganguli A; Steward C; Butler SL; Philips GJ; Meikle ST; Lloyd AW; Grant MH
    J Mater Sci Mater Med; 2005 Apr; 16(4):283-7. PubMed ID: 15803271
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Site-specific peptide and protein immobilization on surface plasmon resonance chips via strain-promoted cycloaddition.
    Wammes AE; Fischer MJ; de Mol NJ; van Eldijk MB; Rutjes FP; van Hest JC; van Delft FL
    Lab Chip; 2013 May; 13(10):1863-7. PubMed ID: 23552823
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gel-derived bioglass as a compound of hydroxyapatite composites.
    Cholewa-Kowalska K; Kokoszka J; Laczka M; Niedźwiedzki L; Madej W; Osyczka AM
    Biomed Mater; 2009 Oct; 4(5):055007. PubMed ID: 19779249
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Competition between DsbA-mediated oxidation and conformational folding of RTEM1 beta-lactamase.
    Frech C; Wunderlich M; Glockshuber R; Schmid FX
    Biochemistry; 1996 Sep; 35(35):11386-95. PubMed ID: 8784194
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adsorption of bisphosphonate onto hydroxyapatite using a novel co-precipitation technique for bone growth enhancement.
    McLeod K; Anderson GI; Dutta NK; Smart RS; Voelcker NH; Sekel R; Kumar S
    J Biomed Mater Res A; 2006 Nov; 79(2):271-81. PubMed ID: 16817191
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein immobilization on Ni(II) ion patterns prepared by microcontact printing and dip-pen nanolithography.
    Wu CC; Reinhoudt DN; Otto C; Velders AH; Subramaniam V
    ACS Nano; 2010 Feb; 4(2):1083-91. PubMed ID: 20104881
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A simple method for controlled immobilization of proteins on modified SAMs.
    Le TT; Wilde CP; Grossman N; Cass AE
    Phys Chem Chem Phys; 2011 Mar; 13(12):5271-8. PubMed ID: 21344100
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Imparting bone mineral affinity to osteogenic proteins through heparin-bisphosphonate conjugates.
    Gittens SA; Bagnall K; Matyas JR; Löbenberg R; Uludag H
    J Control Release; 2004 Aug; 98(2):255-68. PubMed ID: 15262417
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carbon nanotube-hydroxyapatite-hemoglobin nanocomposites with high bioelectrocatalytic activity.
    Zhao HY; Xu XX; Zhang JX; Zheng W; Zheng YF
    Bioelectrochemistry; 2010 Jun; 78(2):124-9. PubMed ID: 19762287
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.