These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

305 related articles for article (PubMed ID: 22559319)

  • 41. Two-photon excitation STED microscopy.
    Moneron G; Hell SW
    Opt Express; 2009 Aug; 17(17):14567-73. PubMed ID: 19687936
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Precision analysis for standard deviation measurements of immobile single fluorescent molecule images.
    DeSantis MC; DeCenzo SH; Li JL; Wang YM
    Opt Express; 2010 Mar; 18(7):6563-76. PubMed ID: 20389680
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Combined scanning probe and total internal reflection fluorescence microscopy.
    Oreopoulos J; Yip CM
    Methods; 2008 Sep; 46(1):2-10. PubMed ID: 18602010
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Advanced markers and labels for life science and biomedical applications.
    Sauer M; Graham D; Tinnefeld P
    J Biophotonics; 2011 Jun; 4(6):375-6. PubMed ID: 21612017
    [No Abstract]   [Full Text] [Related]  

  • 45. Quantifying and optimizing single-molecule switching nanoscopy at high speeds.
    Lin Y; Long JJ; Huang F; Duim WC; Kirschbaum S; Zhang Y; Schroeder LK; Rebane AA; Velasco MG; Virrueta A; Moonan DW; Jiao J; Hernandez SY; Zhang Y; Bewersdorf J
    PLoS One; 2015; 10(5):e0128135. PubMed ID: 26011109
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Super-resolution photon-efficient imaging by nanometric double-helix point spread function localization of emitters (SPINDLE).
    Grover G; DeLuca K; Quirin S; DeLuca J; Piestun R
    Opt Express; 2012 Nov; 20(24):26681-95. PubMed ID: 23187521
    [TBL] [Abstract][Full Text] [Related]  

  • 47. High-definition mapping of neural activity using voltage-sensitive dyes.
    Cinelli AR
    Methods; 2000 Aug; 21(4):349-72. PubMed ID: 10964579
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Fluorescence nanoscopy with optical sectioning by two-photon induced molecular switching using continuous-wave lasers.
    Fölling J; Belov V; Riedel D; Schönle A; Egner A; Eggeling C; Bossi M; Hell SW
    Chemphyschem; 2008 Feb; 9(2):321-6. PubMed ID: 18200483
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Near-field microscopy: throwing light on the nanoworld.
    Richards D
    Philos Trans A Math Phys Eng Sci; 2003 Dec; 361(1813):2843-57. PubMed ID: 14667301
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Beyond sequencing: optical mapping of DNA in the age of nanotechnology and nanoscopy.
    Levy-Sakin M; Ebenstein Y
    Curr Opin Biotechnol; 2013 Aug; 24(4):690-8. PubMed ID: 23428595
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A guide to use photocontrollable fluorescent proteins and synthetic smart fluorophores for nanoscopy.
    Uno SN; Tiwari DK; Kamiya M; Arai Y; Nagai T; Urano Y
    Microscopy (Oxf); 2015 Aug; 64(4):263-77. PubMed ID: 26152215
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Nanoscopy for nanoscience: how super-resolution microscopy extends imaging for nanotechnology.
    Johnson SA
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2015; 7(3):266-81. PubMed ID: 25298332
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Live-Cell Super-resolution Fluorescence Microscopy.
    Mishin AS; Lukyanov KA
    Biochemistry (Mosc); 2019 Jan; 84(Suppl 1):S19-S31. PubMed ID: 31213193
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Two-photon excitation fluorescence microscopy.
    So PT; Dong CY; Masters BR; Berland KM
    Annu Rev Biomed Eng; 2000; 2():399-429. PubMed ID: 11701518
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A method for achieving super-resolved widefield CARS microscopy.
    Hajek KM; Littleton B; Turk D; McIntyre TJ; Rubinsztein-Dunlop H
    Opt Express; 2010 Aug; 18(18):19263-72. PubMed ID: 20940822
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Diffraction-unlimited fluorescence microscopy of living biological samples using pcSOFI.
    Duwé S; Moeyaert B; Dedecker P
    Curr Protoc Chem Biol; 2015 Mar; 7(1):27-41. PubMed ID: 25727061
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Video-rate far-field optical nanoscopy dissects synaptic vesicle movement.
    Westphal V; Rizzoli SO; Lauterbach MA; Kamin D; Jahn R; Hell SW
    Science; 2008 Apr; 320(5873):246-9. PubMed ID: 18292304
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Vignetting correction by exploiting an optical microscopy image sequence.
    Bevilacqua A; Piccinini F; Gherardi A
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():6166-9. PubMed ID: 22255747
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Using conventional fluorescent markers for far-field fluorescence localization nanoscopy allows resolution in the 10-nm range.
    Lemmer P; Gunkel M; Weiland Y; Müller P; Baddeley D; Kaufmann R; Urich A; Eipel H; Amberger R; Hausmann M; Cremer C
    J Microsc; 2009 Aug; 235(2):163-71. PubMed ID: 19659910
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Three-dimensional total-internal reflection fluorescence nanoscopy with nanometric axial resolution by photometric localization of single molecules.
    Szalai AM; Siarry B; Lukin J; Williamson DJ; Unsain N; Cáceres A; Pilo-Pais M; Acuna G; Refojo D; Owen DM; Simoncelli S; Stefani FD
    Nat Commun; 2021 Jan; 12(1):517. PubMed ID: 33483489
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.