These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
108 related articles for article (PubMed ID: 22559368)
1. Unification and extension of monolithic state space and iterative cochlear models. Rapson MJ; Tapson JC; Karpul D J Acoust Soc Am; 2012 May; 131(5):3935-52. PubMed ID: 22559368 [TBL] [Abstract][Full Text] [Related]
2. Different models of the active cochlea, and how to implement them in the state-space formalism. Sisto R; Moleti A; Paternoster N; Botti T; Bertaccini D J Acoust Soc Am; 2010 Sep; 128(3):1191-202. PubMed ID: 20815455 [TBL] [Abstract][Full Text] [Related]
3. Limit cycle oscillations in a nonlinear state space model of the human cochlea. Ku EM; Elliott SJ; Lineton B J Acoust Soc Am; 2009 Aug; 126(2):739-50. PubMed ID: 19640040 [TBL] [Abstract][Full Text] [Related]
4. On the fluid-structure interaction in the cochlea. Rapson MJ; Hamilton TJ; Tapson JC J Acoust Soc Am; 2014 Jul; 136(1):284-300. PubMed ID: 24993214 [TBL] [Abstract][Full Text] [Related]
5. Nonlinear and active two-dimensional cochlear models: time-domain solution. Diependaal RJ; Viergever MA J Acoust Soc Am; 1989 Feb; 85(2):803-12. PubMed ID: 2925995 [TBL] [Abstract][Full Text] [Related]
7. Comparison of WKB and finite difference calculations for a two-dimensional cochlear model. Steele CR; Taber LA J Acoust Soc Am; 1979 Apr; 65(4):1001-6. PubMed ID: 447913 [TBL] [Abstract][Full Text] [Related]
8. Efficient time-domain simulation of nonlinear, state-space, transmission-line models of the cochlea (L). Pan S; Elliott SJ; Teal PD; Lineton B J Acoust Soc Am; 2015 Jun; 137(6):3559-62. PubMed ID: 26093443 [TBL] [Abstract][Full Text] [Related]
9. Statistics of instabilities in a state space model of the human cochlea. Ku EM; Elliott SJ; Lineton B J Acoust Soc Am; 2008 Aug; 124(2):1068-79. PubMed ID: 18681597 [TBL] [Abstract][Full Text] [Related]
10. A wave finite element analysis of the passive cochlea. Elliott SJ; Ni G; Mace BR; Lineton B J Acoust Soc Am; 2013 Mar; 133(3):1535-45. PubMed ID: 23464024 [TBL] [Abstract][Full Text] [Related]
11. One-dimensional transport equation models for sound energy propagation in long spaces: simulations and experiments. Jing Y; Xiang N J Acoust Soc Am; 2010 Apr; 127(4):2323-31. PubMed ID: 20370014 [TBL] [Abstract][Full Text] [Related]
12. Comment on "Ear Asymmetries in middle-ear, cochlear, and brainstem responses in human infants" [J. Acoust. Soc. Am. 123, 1504-1512]. Sininger Y; Cone B J Acoust Soc Am; 2008 Sep; 124(3):1401-3. PubMed ID: 19045630 [TBL] [Abstract][Full Text] [Related]
13. A state space model for cochlear mechanics. Elliott SJ; Ku EM; Lineton B J Acoust Soc Am; 2007 Nov; 122(5):2759-71. PubMed ID: 18189567 [TBL] [Abstract][Full Text] [Related]
14. A Lagrange multiplier mixed finite element formulation for three-dimensional contact of biphasic tissues. Yang T; Spilker RL J Biomech Eng; 2007 Jun; 129(3):457-71. PubMed ID: 17536914 [TBL] [Abstract][Full Text] [Related]
15. Comment on "Optimum absorption and aperture parameters for realistic coupled volume spaces determined from computational analysis and subjective testing results" [J. Acoust. Soc. Am. 127, 223-232 (2010)]. Xiang N; Robinson P; Botts J J Acoust Soc Am; 2010 Nov; 128(5):2539-42. PubMed ID: 21110551 [TBL] [Abstract][Full Text] [Related]
16. Implementing an exact finite boundary integral equation method for finite rough surfaces (L). Fawcett JA J Acoust Soc Am; 2011 Nov; 130(5):2623-6. PubMed ID: 22087886 [TBL] [Abstract][Full Text] [Related]
17. Characteristic-based non-linear simulation of large-scale standing-wave thermoacoustic engine. Abd El-Rahman AI; Abdel-Rahman E J Acoust Soc Am; 2014 Aug; 136(2):649-58. PubMed ID: 25096100 [TBL] [Abstract][Full Text] [Related]
18. Finite element methods for the biomechanics of soft hydrated tissues: nonlinear analysis and adaptive control of meshes. Spilker RL; de Almeida ES; Donzelli PS Crit Rev Biomed Eng; 1992; 20(3-4):279-313. PubMed ID: 1478094 [TBL] [Abstract][Full Text] [Related]
19. Comparison between otoacoustic and auditory brainstem response latencies supports slow backward propagation of otoacoustic emissions. Moleti A; Sisto R J Acoust Soc Am; 2008 Mar; 123(3):1495-503. PubMed ID: 18345838 [TBL] [Abstract][Full Text] [Related]
20. Comparative study of viscoelastic arterial wall models in nonlinear one-dimensional finite element simulations of blood flow. Raghu R; Vignon-Clementel IE; Figueroa CA; Taylor CA J Biomech Eng; 2011 Aug; 133(8):081003. PubMed ID: 21950896 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]