BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 22559376)

  • 1. Across-site patterns of modulation detection: relation to speech recognition.
    Garadat SN; Zwolan TA; Pfingst BE
    J Acoust Soc Am; 2012 May; 131(5):4030-41. PubMed ID: 22559376
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of site-specific level adjustments on speech recognition with cochlear implants.
    Zhou N; Pfingst BE
    Ear Hear; 2014; 35(1):30-40. PubMed ID: 24225651
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using temporal modulation sensitivity to select stimulation sites for processor MAPs in cochlear implant listeners.
    Garadat SN; Zwolan TA; Pfingst BE
    Audiol Neurootol; 2013; 18(4):247-60. PubMed ID: 23881208
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monopolar Detection Thresholds Predict Spatial Selectivity of Neural Excitation in Cochlear Implants: Implications for Speech Recognition.
    Zhou N
    PLoS One; 2016; 11(10):e0165476. PubMed ID: 27798658
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of carrier pulse rate and stimulation site on modulation detection by subjects with cochlear implants.
    Pfingst BE; Xu L; Thompson CS
    J Acoust Soc Am; 2007 Apr; 121(4):2236-46. PubMed ID: 17471737
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Forward masking patterns by low and high-rate stimulation in cochlear implant users: Differences in masking effectiveness and spread of neural excitation.
    Zhou N; Dong L; Dixon S
    Hear Res; 2020 Apr; 389():107921. PubMed ID: 32097828
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessing temporal modulation sensitivity using electrically evoked auditory steady state responses.
    Luke R; Van Deun L; Hofmann M; van Wieringen A; Wouters J
    Hear Res; 2015 Jun; 324():37-45. PubMed ID: 25746913
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Across-site patterns of modulation detection in listeners with cochlear implants.
    Pfingst BE; Burkholder-Juhasz RA; Xu L; Thompson CS
    J Acoust Soc Am; 2008 Feb; 123(2):1054-62. PubMed ID: 18247907
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Psychophysically based site selection coupled with dichotic stimulation improves speech recognition in noise with bilateral cochlear implants.
    Zhou N; Pfingst BE
    J Acoust Soc Am; 2012 Aug; 132(2):994-1008. PubMed ID: 22894220
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Forward masking in different cochlear implant systems.
    Boëx C; Kós MI; Pelizzone M
    J Acoust Soc Am; 2003 Oct; 114(4 Pt 1):2058-65. PubMed ID: 14587605
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Speech perception with combined electric-acoustic stimulation and bilateral cochlear implants in a multisource noise field.
    Rader T; Fastl H; Baumann U
    Ear Hear; 2013; 34(3):324-32. PubMed ID: 23263408
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Speech recognition in noise: estimating effects of compressive nonlinearities in the basilar-membrane response.
    Horwitz AR; Ahlstrom JB; Dubno JR
    Ear Hear; 2007 Sep; 28(5):682-93. PubMed ID: 17804982
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Site-Selection Strategy Based on Polarity Sensitivity for Cochlear Implants: Effects on Spectro-Temporal Resolution and Speech Perception.
    Goehring T; Archer-Boyd A; Deeks JM; Arenberg JG; Carlyon RP
    J Assoc Res Otolaryngol; 2019 Aug; 20(4):431-448. PubMed ID: 31161338
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Current steering and current focusing in cochlear implants: comparison of monopolar, tripolar, and virtual channel electrode configurations.
    Berenstein CK; Mens LH; Mulder JJ; Vanpoucke FJ
    Ear Hear; 2008 Apr; 29(2):250-60. PubMed ID: 18595189
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sentence recognition in noise promoting or suppressing masking release by normal-hearing and cochlear-implant listeners.
    Kwon BJ; Perry TT; Wilhelm CL; Healy EW
    J Acoust Soc Am; 2012 Apr; 131(4):3111-9. PubMed ID: 22501084
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improving speech perception in noise with current focusing in cochlear implant users.
    Srinivasan AG; Padilla M; Shannon RV; Landsberger DM
    Hear Res; 2013 May; 299():29-36. PubMed ID: 23467170
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relationship Between Peripheral and Psychophysical Measures of Amplitude Modulation Detection in Cochlear Implant Users.
    Tejani VD; Abbas PJ; Brown CJ
    Ear Hear; 2017; 38(5):e268-e284. PubMed ID: 28207576
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Effects of Preprocessing Strategies for Pediatric Cochlear Implant Recipients.
    Rakszawski B; Wright R; Cadieux JH; Davidson LS; Brenner C
    J Am Acad Audiol; 2016 Feb; 27(2):85-102. PubMed ID: 26905529
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temporal processing and speech recognition in cochlear implant users.
    Fu QJ
    Neuroreport; 2002 Sep; 13(13):1635-9. PubMed ID: 12352617
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pulse-rate discrimination deficit in cochlear implant users: is the upper limit of pitch peripheral or central?
    Zhou N; Mathews J; Dong L
    Hear Res; 2019 Jan; 371():1-10. PubMed ID: 30423498
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.