These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 22559379)

  • 41. Flow separation in a computational oscillating vocal fold model.
    Alipour F; Scherer RC
    J Acoust Soc Am; 2004 Sep; 116(3):1710-9. PubMed ID: 15478438
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effect of vocal fold stiffness on voice production in a three-dimensional body-cover phonation model.
    Zhang Z
    J Acoust Soc Am; 2017 Oct; 142(4):2311. PubMed ID: 29092586
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Optimal glottal configuration for ease of phonation.
    Lucero JC
    J Voice; 1998 Jun; 12(2):151-8. PubMed ID: 9649070
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A theoretical model of the pressure field arising from asymmetric intraglottal flows applied to a two-mass model of the vocal folds.
    Erath BD; Peterson SD; Zañartu M; Wodicka GR; Plesniak MW
    J Acoust Soc Am; 2011 Jul; 130(1):389-403. PubMed ID: 21786907
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Analysis of flow-structure interaction in the larynx during phonation using an immersed-boundary method.
    Luo H; Mittal R; Bielamowicz SA
    J Acoust Soc Am; 2009 Aug; 126(2):816-24. PubMed ID: 19640046
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Phonation threshold pressure: comparison of calculations and measurements taken with physical models of the vocal fold mucosa.
    Fulcher LP; Scherer RC
    J Acoust Soc Am; 2011 Sep; 130(3):1597-605. PubMed ID: 21895097
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Empirical Eigenfunctions and medial surface dynamics of a human vocal fold.
    Döllinger M; Tayama N; Berry DA
    Methods Inf Med; 2005; 44(3):384-91. PubMed ID: 16113761
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effect of Longitudinal Variation of Vocal Fold Inner Layer Thickness on Fluid-Structure Interaction During Voice Production.
    Jiang W; Xue Q; Zheng X
    J Biomech Eng; 2018 Dec; 140(12):1210081-9. PubMed ID: 30098145
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Sensitivity of vocal fold vibratory modes to their three-layer structure: implications for computational modeling of phonation.
    Xue Q; Zheng X; Bielamowicz S; Mittal R
    J Acoust Soc Am; 2011 Aug; 130(2):965-76. PubMed ID: 21877809
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Intraglottal pressure profiles for a symmetric and oblique glottis with a divergence angle of 10 degrees.
    Scherer RC; Shinwari D; De Witt KJ; Zhang C; Kucinschi BR; Afjeh AA
    J Acoust Soc Am; 2001 Apr; 109(4):1616-30. PubMed ID: 11325132
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Influence of a constriction in the near field of the vocal folds: physical modeling and experimental validation.
    Bailly L; Pelorson X; Henrich N; Ruty N
    J Acoust Soc Am; 2008 Nov; 124(5):3296-308. PubMed ID: 19045812
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Vocal fold dynamics for frequency change.
    Hollien H
    J Voice; 2014 Jul; 28(4):395-405. PubMed ID: 24726331
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Influence of acoustic loading on an effective single mass model of the vocal folds.
    Zañartu M; Mongeau L; Wodicka GR
    J Acoust Soc Am; 2007 Feb; 121(2):1119-29. PubMed ID: 17348533
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Flow-induced vibratory response of idealized versus magnetic resonance imaging-based synthetic vocal fold models.
    Pickup BA; Thomson SL
    J Acoust Soc Am; 2010 Sep; 128(3):EL124-9. PubMed ID: 20815428
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Direct-numerical simulation of the glottal jet and vocal-fold dynamics in a three-dimensional laryngeal model.
    Zheng X; Mittal R; Xue Q; Bielamowicz S
    J Acoust Soc Am; 2011 Jul; 130(1):404-15. PubMed ID: 21786908
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effect of the ventricular folds in a synthetic larynx model.
    Kniesburges S; Birk V; Lodermeyer A; Schützenberger A; Bohr C; Becker S
    J Biomech; 2017 Apr; 55():128-133. PubMed ID: 28285747
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Influence of supraglottal structures on the glottal jet exiting a two-layer synthetic, self-oscillating vocal fold model.
    Drechsel JS; Thomson SL
    J Acoust Soc Am; 2008 Jun; 123(6):4434-45. PubMed ID: 18537394
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A computational study of the effect of vocal-fold asymmetry on phonation.
    Xue Q; Mittal R; Zheng X; Bielamowicz S
    J Acoust Soc Am; 2010 Aug; 128(2):818-27. PubMed ID: 20707451
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Two-dimensional model of vocal fold vibration for sound synthesis of voice and soprano singing.
    Adachi S; Yu J
    J Acoust Soc Am; 2005 May; 117(5):3213-24. PubMed ID: 15957788
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Role of gradients in vocal fold elastic modulus on phonation.
    Bhattacharya P; Kelleher JE; Siegmund T
    J Biomech; 2015 Sep; 48(12):3356-63. PubMed ID: 26159059
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.