These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 22559495)

  • 1. Nucleation on active centers in confined volumes.
    Kožíšek Z; Hikosaka M; Okada K; Demo P
    J Chem Phys; 2012 Apr; 136(16):164506. PubMed ID: 22559495
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nucleation kinetics of folded chain crystals of polyethylene on active centers.
    Kozisek Z; Hikosaka M; Demo P; Sveshnikov AM
    J Chem Phys; 2004 Jul; 121(3):1587-90. PubMed ID: 15260707
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formation of crystal nuclei near critical supersaturation in small volumes.
    Kožíšek Z; Sato K; Ueno S; Demo P
    J Chem Phys; 2011 Mar; 134(9):094508. PubMed ID: 21384986
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Homogeneous nucleation of droplets from supersaturated vapor in a closed system.
    Kozísek Z; Sato K; Demo P; Sveshnikov AM
    J Chem Phys; 2004 Apr; 120(14):6660-4. PubMed ID: 15267558
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of initial conditions on homogeneous nucleation kinetics in a closed system.
    Kozísek Z; Demo P
    J Chem Phys; 2005 Oct; 123(14):144502. PubMed ID: 16238402
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of vapor depletion on nucleation rate.
    Kozísek Z; Demo P
    J Chem Phys; 2007 May; 126(18):184510. PubMed ID: 17508814
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Size distribution of nuclei in a closed system.
    Kozísek Z; Demo P; Sveshnikov AM
    J Chem Phys; 2006 Sep; 125(11):114504. PubMed ID: 16999487
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Size distribution of folded chain crystal nuclei of polyethylene on active centers.
    Kožíšek Z; Hikosaka M; Okada K; Demo P
    J Chem Phys; 2011 Mar; 134(11):114904. PubMed ID: 21428664
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spinodal for the solution-to-crystal phase transformation.
    Filobelo LF; Galkin O; Vekilov PG
    J Chem Phys; 2005 Jul; 123(1):014904. PubMed ID: 16035866
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetics of Nucleation at Increasing Supersaturation.
    Schmelzer JW; Schmelzer J
    J Colloid Interface Sci; 1999 Jul; 215(2):345-355. PubMed ID: 10419670
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent developments in the kinetic theory of nucleation.
    Ruckenstein E; Djikaev YS
    Adv Colloid Interface Sci; 2005 Dec; 118(1-3):51-72. PubMed ID: 16137628
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development in modeling submicron particle formation in two phases flow of solvent-supercritical antisolvent emulsion.
    Dukhin SS; Shen Y; Dave R; Pfeffer R
    Adv Colloid Interface Sci; 2007 Oct; 134-135():72-88. PubMed ID: 17568550
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetics of droplet condensation through a double free-energy barrier.
    Valencia A
    J Chem Phys; 2006 Oct; 125(14):144704. PubMed ID: 17042628
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Statistico-probabilistic approach to taking account of the vapor depletion in the kinetics of homogeneous nucleation: a free-molecular regime of droplet growth.
    Grinin AP; Kuni FM; Djikaev YS
    J Chem Phys; 2004 Jan; 120(4):1846-54. PubMed ID: 15268317
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of nearest-neighbor drops in the kinetics of homogeneous nucleation in a supersaturated vapor.
    Grinin AP; Zhuvikina IA; Kuni FM; Reiss H
    J Chem Phys; 2004 Dec; 121(24):12490-8. PubMed ID: 15606270
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Homogeneous nucleation at high supersaturation and heterogeneous nucleation on microscopic wettable particles: A hybrid thermodynamic/density-functional theory.
    Bykov TV; Zeng XC
    J Chem Phys; 2006 Oct; 125(14):144515. PubMed ID: 17042617
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Complete thermodynamically consistent kinetic model of particle nucleation and growth: numerical study of the applicability of the classical theory of homogeneous nucleation.
    Chesnokov EN; Krasnoperov LN
    J Chem Phys; 2007 Apr; 126(14):144504. PubMed ID: 17444720
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heterogeneous nucleation at a wall near a wetting transition: a Monte Carlo test of the classical theory.
    Winter D; Virnau P; Binder K
    J Phys Condens Matter; 2009 Nov; 21(46):464118. PubMed ID: 21715882
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An aggregation-volume-bias Monte Carlo investigation on the condensation of a Lennard-Jones vapor below the triple point and crystal nucleation in cluster systems: an in-depth evaluation of the classical nucleation theory.
    Chen B; Kim H; Keasler SJ; Nellas RB
    J Phys Chem B; 2008 Apr; 112(13):4067-78. PubMed ID: 18335920
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermodynamic analysis of nucleation in confined space: generalized Gibbs approach.
    Schmelzer JW; Abyzov AS
    J Chem Phys; 2011 Feb; 134(5):054511. PubMed ID: 21303142
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.