These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 22559510)

  • 1. Experimental analysis and computer simulation of a methodology for laser focusing in the solar cell characterization by laser beam induced current.
    Navas J; Alcántara R; Fernández-Lorenzo C; Martiín-Calleja J
    Rev Sci Instrum; 2012 Apr; 83(4):043102. PubMed ID: 22559510
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High resolution laser beam induced current images under trichromatic laser radiation: approximation to the solar irradiation.
    Navas FJ; Alcántara R; Fernández-Lorenzo C; Martín-Calleja J
    Rev Sci Instrum; 2010 Mar; 81(3):035108. PubMed ID: 20370214
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A methodology for improving laser beam induced current images of dye sensitized solar cells.
    Navas FJ; Alcántara R; Fernández-Lorenzo C; Martín J
    Rev Sci Instrum; 2009 Jun; 80(6):063102. PubMed ID: 19566191
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High saturation solar light beam induced current scanning of solar cells.
    Vorster FJ; van Dyk EE
    Rev Sci Instrum; 2007 Jan; 78(1):013904. PubMed ID: 17503930
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On-line thermal dependence study of the main solar cell electrical photoconversion parameters using low thermal emission lamps.
    Gallardo JJ; Navas J; Alcántara R; Fernández-Lorenzo C; Aguilar T; Martín-Calleja J
    Rev Sci Instrum; 2012 Jun; 83(6):063105. PubMed ID: 22755613
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design, fabrication and optical characterization of photonic crystal assisted thin film monocrystalline-silicon solar cells.
    Meng X; Depauw V; Gomard G; El Daif O; Trompoukis C; Drouard E; Jamois C; Fave A; Dross F; Gordon I; Seassal C
    Opt Express; 2012 Jul; 20 Suppl 4():A465-75. PubMed ID: 22828615
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A new adaptive light beam focusing principle for scanning light stimulation systems.
    Bitzer LA; Meseth M; Benson N; Schmechel R
    Rev Sci Instrum; 2013 Feb; 84(2):023707. PubMed ID: 23464218
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comprehensive study for the plasmonic thin-film solar cell with periodic structure.
    Sha WE; Choy WC; Chew WC
    Opt Express; 2010 Mar; 18(6):5993-6007. PubMed ID: 20389619
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Femtosecond laser induced surface nanostructuring and simultaneous crystallization of amorphous thin silicon film.
    Wang XC; Zheng HY; Tan CW; Wang F; Yu HY; Pey KL
    Opt Express; 2010 Aug; 18(18):19379-85. PubMed ID: 20940833
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Light trapping in thin-film silicon solar cells with submicron surface texture.
    Dewan R; Marinkovic M; Noriega R; Phadke S; Salleo A; Knipp D
    Opt Express; 2009 Dec; 17(25):23058-65. PubMed ID: 20052232
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simultaneous machining of parallel grooves in SnO(2) thin films using a Nd:YAG laser and a kinoform.
    Holmér AK
    Appl Opt; 1996 May; 35(15):2614-8. PubMed ID: 21085406
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mitochondrial "movement" and lens optics following oxidative stress from UV-B irradiation: cultured bovine lenses and human retinal pigment epithelial cells (ARPE-19) as examples.
    Bantseev V; Youn HY
    Ann N Y Acad Sci; 2006 Dec; 1091():17-33. PubMed ID: 17341599
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Topography-assisted correction of superficial irregularities of the cornea with the excimer laser].
    Langenbucher A; Seitz B; Kus MM; van der Heyd GJ
    Klin Monbl Augenheilkd; 1998 Sep; 213(3):132-40. PubMed ID: 9793910
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of front and back grating on light trapping in microcrystalline thin-film silicon solar cells.
    Madzharov D; Dewan R; Knipp D
    Opt Express; 2011 Mar; 19 Suppl 2():A95-A107. PubMed ID: 21445224
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Atomic-scale distribution of impurities in CuInSe2-based thin-film solar cells.
    Cojocaru-Mirédin O; Choi P; Wuerz R; Raabe D
    Ultramicroscopy; 2011 May; 111(6):552-6. PubMed ID: 21288643
    [TBL] [Abstract][Full Text] [Related]  

  • 16. BV-2 microglial cells sense micro-nanotextured silicon surface topology.
    Persheyev S; Fan Y; Irving A; Rose MJ
    J Biomed Mater Res A; 2011 Oct; 99(1):135-40. PubMed ID: 21812094
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatial distribution of absorption in plasmonic thin film solar cells.
    Chao CC; Wang CM; Chang JY
    Opt Express; 2010 May; 18(11):11763-71. PubMed ID: 20589037
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formation of intra-island grain boundaries in pentacene monolayers.
    Zhang J; Wu Y; Duhm S; Rabe JP; Rudolf P; Koch N
    Phys Chem Chem Phys; 2011 Dec; 13(47):21102-8. PubMed ID: 22024998
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of nanoporous silicon layer to reduce the optical losses of crystalline silicon solar cells.
    Lee S; Lee E
    J Nanosci Nanotechnol; 2007 Nov; 7(11):3713-6. PubMed ID: 18047043
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Broadband absorption enhancement achieved by optical layer mediated plasmonic solar cell.
    Ren W; Zhang G; Wu Y; Ding H; Shen Q; Zhang K; Li J; Pan N; Wang X
    Opt Express; 2011 Dec; 19(27):26536-50. PubMed ID: 22274238
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.