These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
456 related articles for article (PubMed ID: 22559605)
1. Development and evaluation of an improved quantitative (90)Y bremsstrahlung SPECT method. Rong X; Du Y; Ljungberg M; Rault E; Vandenberghe S; Frey EC Med Phys; 2012 May; 39(5):2346-58. PubMed ID: 22559605 [TBL] [Abstract][Full Text] [Related]
2. A collimator optimization method for quantitative imaging: application to Y-90 bremsstrahlung SPECT. Rong X; Frey EC Med Phys; 2013 Aug; 40(8):082504. PubMed ID: 23927349 [TBL] [Abstract][Full Text] [Related]
3. Evaluation of quantitative (90)Y SPECT based on experimental phantom studies. Minarik D; Sjögreen Gleisner K; Ljungberg M Phys Med Biol; 2008 Oct; 53(20):5689-703. PubMed ID: 18812648 [TBL] [Abstract][Full Text] [Related]
4. A method for energy window optimization for quantitative tasks that includes the effects of model-mismatch on bias: application to Y-90 bremsstrahlung SPECT imaging. Rong X; Du Y; Frey EC Phys Med Biol; 2012 Jun; 57(12):3711-25. PubMed ID: 22617760 [TBL] [Abstract][Full Text] [Related]
5. Evaluation the effect of different collimators and energy window on Y-90 bremsstrahlung SPECT imaging by SIMIND Monte Carlo program. Taherparvar P; Shahmari N Nucl Med Rev Cent East Eur; 2019; 22(2):45-55. PubMed ID: 31482556 [TBL] [Abstract][Full Text] [Related]
6. Monte Carlo simulation of PET and SPECT imaging of 90Y. Takahashi A; Himuro K; Yamashita Y; Komiya I; Baba S; Sasaki M Med Phys; 2015 Apr; 42(4):1926-35. PubMed ID: 25832083 [TBL] [Abstract][Full Text] [Related]
7. Quantitative Monte Carlo-based holmium-166 SPECT reconstruction. Elschot M; Smits ML; Nijsen JF; Lam MG; Zonnenberg BA; van den Bosch MA; Viergever MA; de Jong HW Med Phys; 2013 Nov; 40(11):112502. PubMed ID: 24320461 [TBL] [Abstract][Full Text] [Related]
8. Collimator and energy window optimization for ⁹⁰Y bremsstrahlung SPECT imaging: A SIMIND Monte Carlo study. Roshan HR; Mahmoudian B; Gharepapagh E; Azarm A; Pirayesh Islamian J Appl Radiat Isot; 2016 Feb; 108():124-128. PubMed ID: 26720261 [TBL] [Abstract][Full Text] [Related]
9. Improved quantitative Dewaraja YK; Chun SY; Srinivasa RN; Kaza RK; Cuneo KC; Majdalany BS; Novelli PM; Ljungberg M; Fessler JA Med Phys; 2017 Dec; 44(12):6364-6376. PubMed ID: 28940483 [TBL] [Abstract][Full Text] [Related]
10. Quantitative Monte Carlo-based 90Y SPECT reconstruction. Elschot M; Lam MG; van den Bosch MA; Viergever MA; de Jong HW J Nucl Med; 2013 Sep; 54(9):1557-63. PubMed ID: 23907758 [TBL] [Abstract][Full Text] [Related]
11. Scatter and crosstalk corrections for (99m)Tc/(123)I dual-radionuclide imaging using a CZT SPECT system with pinhole collimators. Fan P; Hutton BF; Holstensson M; Ljungberg M; Pretorius PH; Prasad R; Ma T; Liu Y; Wang S; Thorn SL; Stacy MR; Sinusas AJ; Liu C Med Phys; 2015 Dec; 42(12):6895-911. PubMed ID: 26632046 [TBL] [Abstract][Full Text] [Related]
12. SPECT performance evaluation on image of Yttrium 90 - Bremsstrahlung using Monte Carlo simulation. Pastrana Orejuela CO; de Assis Coelho F; Oliveira SM; Souza SAL; Vasconcellos de Sá L; Xavier da Silva A; Torres Berdeguez MB Appl Radiat Isot; 2021 Feb; 168():109456. PubMed ID: 33321371 [TBL] [Abstract][Full Text] [Related]
13. Development and evaluation of a model-based downscatter compensation method for quantitative I-131 SPECT. Song N; Du Y; He B; Frey EC Med Phys; 2011 Jun; 38(6):3193-204. PubMed ID: 21815394 [TBL] [Abstract][Full Text] [Related]
14. Optimization of energy window for 90Y bremsstrahlung SPECT imaging for detection tasks using the ideal observer with model-mismatch. Rong X; Ghaly M; Frey EC Med Phys; 2013 Jun; 40(6):062502. PubMed ID: 23718607 [TBL] [Abstract][Full Text] [Related]
15. Fast simulation of yttrium-90 bremsstrahlung photons with GATE. Rault E; Staelens S; Van Holen R; De Beenhouwer J; Vandenberghe S Med Phys; 2010 Jun; 37(6):2943-50. PubMed ID: 20632606 [TBL] [Abstract][Full Text] [Related]
16. A Monte Carlo and physical phantom evaluation of quantitative In-111 SPECT. He B; Du Y; Song X; Segars WP; Frey EC Phys Med Biol; 2005 Sep; 50(17):4169-85. PubMed ID: 16177538 [TBL] [Abstract][Full Text] [Related]
17. Effects of shortened acquisition time on accuracy and precision of quantitative estimates of organ activity. He B; Frey EC Med Phys; 2010 Apr; 37(4):1807-15. PubMed ID: 20443503 [TBL] [Abstract][Full Text] [Related]
18. Algorithms and Analyses for Joint Spectral Image Reconstruction in Y-90 Bremsstrahlung SPECT. Chun SY; Nguyen MP; Phan TQ; Kim H; Fessler JA; Dewaraja YK IEEE Trans Med Imaging; 2020 May; 39(5):1369-1379. PubMed ID: 31647425 [TBL] [Abstract][Full Text] [Related]
19. A gate evaluation of the sources of error in quantitative Strydhorst J; Carlier T; Dieudonné A; Conti M; Buvat I Med Phys; 2016 Oct; 43(10):5320-5329. PubMed ID: 28105711 [TBL] [Abstract][Full Text] [Related]
20. Evaluation of 3D Monte Carlo-based scatter correction for 201Tl cardiac perfusion SPECT. Xiao J; de Wit TC; Zbijewski W; Staelens SG; Beekman FJ J Nucl Med; 2007 Apr; 48(4):637-44. PubMed ID: 17401103 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]