BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 22559662)

  • 1. X-ray scatter correction method for dedicated breast computed tomography.
    Sechopoulos I
    Med Phys; 2012 May; 39(5):2896-903. PubMed ID: 22559662
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep learning for x-ray scatter correction in dedicated breast CT.
    Pautasso JJ; Caballo M; Mikerov M; Boone JM; Michielsen K; Sechopoulos I
    Med Phys; 2023 Apr; 50(4):2022-2036. PubMed ID: 36565012
    [TBL] [Abstract][Full Text] [Related]  

  • 3. TU-E-217BCD-02: An X-Ray Scatter Correction Method for Dedicated Breast Computed Tomography.
    Sechopoulos I
    Med Phys; 2012 Jun; 39(6Part24):3914. PubMed ID: 28518676
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A software-based x-ray scatter correction method for breast tomosynthesis.
    Jia Feng SS; Sechopoulos I
    Med Phys; 2011 Dec; 38(12):6643-53. PubMed ID: 22149846
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A breast-specific, negligible-dose scatter correction technique for dedicated cone-beam breast CT: a physics-based approach to improve Hounsfield Unit accuracy.
    Yang K; Burkett G; Boone JM
    Phys Med Biol; 2014 Nov; 59(21):6487-505. PubMed ID: 25310586
    [TBL] [Abstract][Full Text] [Related]  

  • 6. X-ray scatter correction method for dedicated breast computed tomography: improvements and initial patient testing.
    Ramamurthy S; D'Orsi CJ; Sechopoulos I
    Phys Med Biol; 2016 Feb; 61(3):1116-35. PubMed ID: 26760295
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A simple, direct method for x-ray scatter estimation and correction in digital radiography and cone-beam CT.
    Siewerdsen JH; Daly MJ; Bakhtiar B; Moseley DJ; Richard S; Keller H; Jaffray DA
    Med Phys; 2006 Jan; 33(1):187-97. PubMed ID: 16485425
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A deep learning approach to estimate x-ray scatter in digital breast tomosynthesis: From phantom models to clinical applications.
    Pinto MC; Mauter F; Michielsen K; Biniazan R; Kappler S; Sechopoulos I
    Med Phys; 2023 Aug; 50(8):4744-4757. PubMed ID: 37394837
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Library based x-ray scatter correction for dedicated cone beam breast CT.
    Shi L; Vedantham S; Karellas A; Zhu L
    Med Phys; 2016 Aug; 43(8):4529. PubMed ID: 27487870
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Monte Carlo based scatter removal method for non-isocentric cone-beam CT acquisitions using a deep convolutional autoencoder.
    van der Heyden B; Uray M; Fonseca GP; Huber P; Us D; Messner I; Law A; Parii A; Reisz N; Rinaldi I; Vilches Freixas G; Deutschmann H; Verhaegen F; Steininger P
    Phys Med Biol; 2020 Jul; 65(14):145002. PubMed ID: 32294626
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dosimetric characterization of a dedicated breast computed tomography clinical prototype.
    Sechopoulos I; Feng SS; D'Orsi CJ
    Med Phys; 2010 Aug; 37(8):4110-20. PubMed ID: 20879571
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simulated scatter performance of an inverse-geometry dedicated breast CT system.
    Bhagtani R; Schmidt TG
    Med Phys; 2009 Mar; 36(3):788-96. PubMed ID: 19378739
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Power spectrum analysis of the x-ray scatter signal in mammography and breast tomosynthesis projections.
    Sechopoulos I; Bliznakova K; Fei B
    Med Phys; 2013 Oct; 40(10):101905. PubMed ID: 24089907
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cone-beam breast computed tomography with a displaced flat panel detector array.
    Mettivier G; Russo P; Lanconelli N; Meo SL
    Med Phys; 2012 May; 39(5):2805-19. PubMed ID: 22559652
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A fluence modulation and scatter shielding apparatus for dedicated breast CT: Theory of operation.
    Ghazi P
    Med Phys; 2020 Apr; 47(4):1590-1608. PubMed ID: 31955431
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel hardware duo of beam modulation and shielding to reduce scatter acquisition and dose in cone-beam breast CT.
    Ghazi P; Youssefian S; Ghazi T
    Med Phys; 2022 Jan; 49(1):169-185. PubMed ID: 34825715
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acuros CTS: A fast, linear Boltzmann transport equation solver for computed tomography scatter - Part II: System modeling, scatter correction, and optimization.
    Wang A; Maslowski A; Messmer P; Lehmann M; Strzelecki A; Yu E; Paysan P; Brehm M; Munro P; Star-Lack J; Seghers D
    Med Phys; 2018 May; 45(5):1914-1925. PubMed ID: 29509973
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient Monte Carlo based scatter artifact reduction in cone-beam micro-CT.
    Zbijewski W; Beekman FJ
    IEEE Trans Med Imaging; 2006 Jul; 25(7):817-27. PubMed ID: 16827483
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatial frequency spectrum of the x-ray scatter distribution in CBCT projections.
    Bootsma GJ; Verhaegen F; Jaffray DA
    Med Phys; 2013 Nov; 40(11):111901. PubMed ID: 24320434
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Shading artifact correction in breast CT using an interleaved deep learning segmentation and maximum-likelihood polynomial fitting approach.
    Ghazi P; Hernandez AM; Abbey C; Yang K; Boone JM
    Med Phys; 2019 Aug; 46(8):3414-3430. PubMed ID: 31102462
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.