These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 22559676)

  • 21. Modeling photoacoustic imaging with a scanning focused detector using Monte Carlo simulation of energy deposition.
    Paltauf G; Torke PR; Nuster R
    J Biomed Opt; 2018 Sep; 23(12):1-11. PubMed ID: 30251482
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sensitivity analysis for oblique incidence reflectometry using Monte Carlo simulations.
    Kamran F; Andersen PE
    Appl Opt; 2015 Aug; 54(23):7099-105. PubMed ID: 26368382
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Application of adjoint Monte Carlo to accelerate simulations of mono-directional beams in treatment planning for boron neutron capture therapy.
    Nievaart VA; Légràdy D; Moss RL; Kloosterman JL; van der Hagen TH; van Dam H
    Med Phys; 2007 Apr; 34(4):1321-35. PubMed ID: 17500463
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Determination of the optical properties of turbid media from a single Monte Carlo simulation.
    Kienle A; Patterson MS
    Phys Med Biol; 1996 Oct; 41(10):2221-7. PubMed ID: 8912392
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Quantitative photoacoustic imaging of two-photon absorption.
    Bardsley P; Ren K; Zhang R
    J Biomed Opt; 2018 Jan; 23(1):1-11. PubMed ID: 29297207
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Acceleration of Monte Carlo simulation of photon migration in complex heterogeneous media using Intel many-integrated core architecture.
    Gorshkov AV; Kirillin MY
    J Biomed Opt; 2015 Aug; 20(8):85002. PubMed ID: 26249663
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Recovering intrinsic fluorescence by Monte Carlo modeling.
    Müller M; Hendriks BH
    J Biomed Opt; 2013 Feb; 18(2):27009. PubMed ID: 23400402
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Monte Carlo simulation of light-tissue interaction: three-dimensional simulation for trans-illumination-based imaging of skin lesions.
    Patwardhan SV; Dhawan AP; Relue PA
    IEEE Trans Biomed Eng; 2005 Jul; 52(7):1227-36. PubMed ID: 16041986
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Correcting photoacoustic signals for fluence variations using acousto-optic modulation.
    Daoudi K; Hussain A; Hondebrink E; Steenbergen W
    Opt Express; 2012 Jun; 20(13):14117-29. PubMed ID: 22714476
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Consecutively reconstructing absorption and scattering distributions in turbid media with multiple-illumination photoacoustic tomography.
    Shao P; Harrison TJ; Zemp RJ
    J Biomed Opt; 2014 Dec; 19(12):126009. PubMed ID: 25517128
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Solution of the direct problem in turbid media with inclusions using Monte Carlo simulations implemented in graphics processing units: new criterion for processing transmittance data.
    Carbone N; Di Rocco H; Iriarte DI; Pomarico JA
    J Biomed Opt; 2010; 15(3):035002. PubMed ID: 20615002
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Monte Carlo simulation of time-dependent, transport-limited fluorescent boundary measurements in frequency domain.
    Pan T; Rasmussen JC; Lee JH; Sevick-Muraca EM
    Med Phys; 2007 Apr; 34(4):1298-311. PubMed ID: 17500461
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Three-dimensional quantitative photoacoustic tomography using an adjoint radiance Monte Carlo model and gradient descent.
    Buchmann J; Kaplan B; Powell S; Prohaska S; Laufer J
    J Biomed Opt; 2019 Jun; 24(6):1-13. PubMed ID: 31172727
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Simulation of optical coherence tomography images by Monte Carlo modeling based on polarization vector approach.
    Kirillin M; Meglinski I; Kuzmin V; Sergeeva E; Myllylä R
    Opt Express; 2010 Oct; 18(21):21714-24. PubMed ID: 20941071
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electric field Monte Carlo simulation of focused stimulated emission depletion beam, radially and azimuthally polarized beams for in vivo deep bioimaging.
    Cai F; He S
    J Biomed Opt; 2014 Jan; 19(1):11022. PubMed ID: 24464046
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Recovery of hemoglobin oxygen saturation and intrinsic fluorescence with a forward-adjoint model.
    Finlay JC; Foster TH
    Appl Opt; 2005 Apr; 44(10):1917-33. PubMed ID: 15813528
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Monte Carlo algorithm for efficient simulation of time-resolved fluorescence in layered turbid media.
    Liebert A; Wabnitz H; Zołek N; Macdonald R
    Opt Express; 2008 Aug; 16(17):13188-202. PubMed ID: 18711557
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Combined optical intensity and polarization methodology for analyte concentration determination in simulated optically clear and turbid biological media.
    Wood MF; Côté D; Vitkin IA
    J Biomed Opt; 2008; 13(4):044037. PubMed ID: 19021364
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Photoacoustic guided ultrasound wavefront shaping for targeted acousto-optic imaging.
    Staley J; Hondebrink E; Peterson W; Steenbergen W
    Opt Express; 2013 Dec; 21(25):30553-62. PubMed ID: 24514632
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Binary phase masking for optical interrogation of matters in turbid media.
    Wang F
    Opt Lett; 2008 Nov; 33(22):2587-9. PubMed ID: 19015676
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.