BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

364 related articles for article (PubMed ID: 22559695)

  • 1. Inverse Monte Carlo method in a multilayered tissue model for diffuse reflectance spectroscopy.
    Fredriksson I; Larsson M; Strömberg T
    J Biomed Opt; 2012 Apr; 17(4):047004. PubMed ID: 22559695
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inverse Monte Carlo in a multilayered tissue model: merging diffuse reflectance spectroscopy and laser Doppler flowmetry.
    Fredriksson I; Burdakov O; Larsson M; Strömberg T
    J Biomed Opt; 2013 Dec; 18(12):127004. PubMed ID: 24352692
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Scaling method for fast Monte Carlo simulation of diffuse reflectance spectra from multilayered turbid media.
    Liu Q; Ramanujam N
    J Opt Soc Am A Opt Image Sci Vis; 2007 Apr; 24(4):1011-25. PubMed ID: 17361287
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of one-layer assumption on diffuse reflectance spectroscopy of skin.
    Hennessy R; Markey MK; Tunnell JW
    J Biomed Opt; 2015 Feb; 20(2):27001. PubMed ID: 25649627
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid and accurate estimation of blood saturation, melanin content, and epidermis thickness from spectral diffuse reflectance.
    Yudovsky D; Pilon L
    Appl Opt; 2010 Apr; 49(10):1707-19. PubMed ID: 20357850
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monte Carlo lookup table-based inverse model for extracting optical properties from tissue-simulating phantoms using diffuse reflectance spectroscopy.
    Hennessy R; Lim SL; Markey MK; Tunnell JW
    J Biomed Opt; 2013 Mar; 18(3):037003. PubMed ID: 23455965
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microcirculation assessment using an individualized model for diffuse reflectance spectroscopy and conventional laser Doppler flowmetry.
    Strömberg T; Karlsson H; Fredriksson I; Nyström FH; Larsson M
    J Biomed Opt; 2014 May; 19(5):057002. PubMed ID: 24788373
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimation of melanin and hemoglobin in skin tissue using multiple regression analysis aided by Monte Carlo simulation.
    Nishidate I; Aizu Y; Mishina H
    J Biomed Opt; 2004; 9(4):700-10. PubMed ID: 15250756
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lookup-table-based inverse model for human skin reflectance spectroscopy: two-layered Monte Carlo simulations and experiments.
    Zhong X; Wen X; Zhu D
    Opt Express; 2014 Jan; 22(2):1852-64. PubMed ID: 24515194
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of fiber optic probe geometry on the applicability of inverse models of tissue reflectance spectroscopy: computational models and experimental measurements.
    Sun J; Fu K; Wang A; Lin AW; Utzinger U; Drezek R
    Appl Opt; 2006 Nov; 45(31):8152-62. PubMed ID: 17068558
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monte Carlo analysis of single fiber reflectance spectroscopy: photon path length and sampling depth.
    Kanick SC; Robinson DJ; Sterenborg HJ; Amelink A
    Phys Med Biol; 2009 Nov; 54(22):6991-7008. PubMed ID: 19887712
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hemoglobin parameters from diffuse reflectance data.
    Mourant JR; Marina OC; Hebert TM; Kaur G; Smith HO
    J Biomed Opt; 2014 Mar; 19(3):37004. PubMed ID: 24671524
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancing the sensitivity to scattering coefficient of the epithelium in a two-layered tissue model by oblique optical fibers: Monte Carlo study.
    Sung KB; Chen HH
    J Biomed Opt; 2012 Oct; 17(10):107003. PubMed ID: 23047254
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimation of regional hemoglobin concentration in biological tissues using diffuse reflectance spectroscopy with a novel spectral interpretation algorithm.
    Chen P; Fernald B; Lin W
    Phys Med Biol; 2011 Jul; 56(13):3985-4000. PubMed ID: 21666291
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A library based fitting method for visual reflectance spectroscopy of human skin.
    Verkruysse W; Zhang R; Choi B; Lucassen G; Svaasand LO; Nelson JS
    Phys Med Biol; 2005 Jan; 50(1):57-70. PubMed ID: 15715422
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New closed-form approximation for skin chromophore mapping.
    Välisuo P; Kaartinen I; Tuchin V; Alander J
    J Biomed Opt; 2011 Apr; 16(4):046012. PubMed ID: 21529081
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monitoring of tissue optical properties during thermal coagulation of ex vivo tissues.
    Nagarajan VK; Yu B
    Lasers Surg Med; 2016 Sep; 48(7):686-94. PubMed ID: 27250022
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Subdiffuse scattering model for single fiber reflectance spectroscopy.
    Post AL; Sterenborg HJCM; Woltjer FG; van Leeuwen TG; Faber DJ
    J Biomed Opt; 2020 Jan; 25(1):1-11. PubMed ID: 31920047
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monte Carlo-based inverse model for calculating tissue optical properties. Part I: Theory and validation on synthetic phantoms.
    Palmer GM; Ramanujam N
    Appl Opt; 2006 Feb; 45(5):1062-71. PubMed ID: 16512550
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diffuse reflectance spectroscopy with a self-calibrating fiber optic probe.
    Yu B; Fu H; Bydlon T; Bender JE; Ramanujam N
    Opt Lett; 2008 Aug; 33(16):1783-5. PubMed ID: 18709086
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.