These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 22559853)

  • 21. Renal, metabolic and cardiovascular considerations of SGLT2 inhibition.
    DeFronzo RA; Norton L; Abdul-Ghani M
    Nat Rev Nephrol; 2017 Jan; 13(1):11-26. PubMed ID: 27941935
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The role of the kidney in hyperglycemia: a new therapeutic target in type 2 diabetes mellitus.
    Hinnen D
    J Cardiovasc Nurs; 2013; 28(2):157-65. PubMed ID: 22343215
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Experimental type II diabetes and related models of impaired glucose metabolism differentially regulate glucose transporters at the proximal tubule brush border membrane.
    Chichger H; Cleasby ME; Srai SK; Unwin RJ; Debnam ES; Marks J
    Exp Physiol; 2016 Jun; 101(6):731-42. PubMed ID: 27164183
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Glucose control by the kidney: an emerging target in diabetes.
    Marsenic O
    Am J Kidney Dis; 2009 May; 53(5):875-83. PubMed ID: 19324482
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Molecular signaling mechanisms of renal gluconeogenesis in nondiabetic and diabetic conditions.
    Swe MT; Pongchaidecha A; Chatsudthipong V; Chattipakorn N; Lungkaphin A
    J Cell Physiol; 2019 Jun; 234(6):8134-8151. PubMed ID: 30370538
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Lactate metabolism in the isolated perfused rat kidney: relations to renal function and gluconeogenesis.
    Cohen JJ; Little JR
    J Physiol; 1976 Feb; 255(2):399-414. PubMed ID: 1255526
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The tubular hypothesis of nephron filtration and diabetic kidney disease.
    Vallon V; Thomson SC
    Nat Rev Nephrol; 2020 Jun; 16(6):317-336. PubMed ID: 32152499
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mechanisms of Protective Effects of SGLT2 Inhibitors in Cardiovascular Disease and Renal Dysfunction.
    Liu B; Wang Y; Zhang Y; Yan B
    Curr Top Med Chem; 2019; 19(20):1818-1849. PubMed ID: 31456521
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Insulin regulation of gluconeogenesis.
    Hatting M; Tavares CDJ; Sharabi K; Rines AK; Puigserver P
    Ann N Y Acad Sci; 2018 Jan; 1411(1):21-35. PubMed ID: 28868790
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The role of the kidneys in glucose homeostasis: a new path towards normalizing glycaemia.
    DeFronzo RA; Davidson JA; Del Prato S
    Diabetes Obes Metab; 2012 Jan; 14(1):5-14. PubMed ID: 21955459
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Probing SGLT2 as a therapeutic target for diabetes: basic physiology and consequences.
    Gallo LA; Wright EM; Vallon V
    Diab Vasc Dis Res; 2015 Mar; 12(2):78-89. PubMed ID: 25616707
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Failure of substrate-induced gluconeogenesis to increase overall glucose appearance in normal humans. Demonstration of hepatic autoregulation without a change in plasma glucose concentration.
    Jenssen T; Nurjhan N; Consoli A; Gerich JE
    J Clin Invest; 1990 Aug; 86(2):489-97. PubMed ID: 2200805
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Is it time to think about the sodium glucose co-transporter 2 sympathetically?
    Elliott RH; Matthews VB; Rudnicka C; Schlaich MP
    Nephrology (Carlton); 2016 Apr; 21(4):286-94. PubMed ID: 26369359
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Glucose Metabolism in the Kidney: Neurohormonal Activation and Heart Failure Development.
    Gronda E; Jessup M; Iacoviello M; Palazzuoli A; Napoli C
    J Am Heart Assoc; 2020 Dec; 9(23):e018889. PubMed ID: 33190567
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Natural Products as Lead Compounds for Sodium Glucose Cotransporter (SGLT) Inhibitors.
    Blaschek W
    Planta Med; 2017 Aug; 83(12-13):985-993. PubMed ID: 28395363
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Renal Na(+)-glucose cotransporters.
    Wright EM
    Am J Physiol Renal Physiol; 2001 Jan; 280(1):F10-8. PubMed ID: 11133510
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Glycemic control by the SGLT2 inhibitor empagliflozin decreases aortic stiffness, renal resistivity index and kidney injury.
    Aroor AR; Das NA; Carpenter AJ; Habibi J; Jia G; Ramirez-Perez FI; Martinez-Lemus L; Manrique-Acevedo CM; Hayden MR; Duta C; Nistala R; Mayoux E; Padilla J; Chandrasekar B; DeMarco VG
    Cardiovasc Diabetol; 2018 Jul; 17(1):108. PubMed ID: 30060748
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Impact of an SGLT2-loss of function mutation on renal architecture, histology, and glucose homeostasis.
    Hughes CB; Mussman GM; Ray P; Bunn RC; Cornea V; Thrailkill KM; Fowlkes JL; Popescu I
    Cell Tissue Res; 2021 May; 384(2):527-543. PubMed ID: 33409652
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Pathogenesis of prediabetes: role of the liver in isolated fasting hyperglycemia and combined fasting and postprandial hyperglycemia.
    Basu R; Barosa C; Jones J; Dube S; Carter R; Basu A; Rizza RA
    J Clin Endocrinol Metab; 2013 Mar; 98(3):E409-17. PubMed ID: 23345093
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The controversial role of glucose in the diabetic kidney.
    Fernandes R
    Porto Biomed J; 2021; 6(1):e113. PubMed ID: 33532655
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.