These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
385 related articles for article (PubMed ID: 22560197)
21. Versatile Polymer Nanoparticles as Two-Photon-Triggered Photosensitizers for Simultaneous Cellular, Deep-Tissue Imaging, and Photodynamic Therapy. Guo L; Ge J; Liu Q; Jia Q; Zhang H; Liu W; Niu G; Liu S; Gong J; Hackbarth S; Wang P Adv Healthc Mater; 2017 Jun; 6(12):. PubMed ID: 28338291 [TBL] [Abstract][Full Text] [Related]
22. In vitro toxicity testing of zinc tetrasulfophthalocyanines in fibroblast and keratinocyte cells for the treatment of melanoma cancer by photodynamic therapy. Maduray K; Karsten A; Odhav B; Nyokong T J Photochem Photobiol B; 2011 May; 103(2):98-104. PubMed ID: 21367615 [TBL] [Abstract][Full Text] [Related]
23. Photodynamic inactivation of viruses using upconversion nanoparticles. Lim ME; Lee YL; Zhang Y; Chu JJ Biomaterials; 2012 Feb; 33(6):1912-20. PubMed ID: 22153019 [TBL] [Abstract][Full Text] [Related]
24. Lipid coated mesoporous silica nanoparticles as photosensitive drug carriers. Yang Y; Song W; Wang A; Zhu P; Fei J; Li J Phys Chem Chem Phys; 2010 May; 12(17):4418-22. PubMed ID: 20407714 [TBL] [Abstract][Full Text] [Related]
25. Calcium phosphosilicate nanoparticles for imaging and photodynamic therapy of cancer. Tacelosky DM; Creecy AE; Shanmugavelandy SS; Smith JP; Claxton DF; Adair JH; Kester M; Barth BM Discov Med; 2012 Apr; 13(71):275-85. PubMed ID: 22541615 [TBL] [Abstract][Full Text] [Related]
26. Synthesis and in vitro studies of biodegradable modified chitosan nanoparticles for photodynamic treatment of cancer. Reza Saboktakin M; Tabatabaie RM; Maharramov A; Ali Ramazanov M Int J Biol Macromol; 2011 Dec; 49(5):1059-65. PubMed ID: 21907233 [TBL] [Abstract][Full Text] [Related]
27. Polymeric nanoparticles for photodynamic therapy. Lee YE; Kopelman R Methods Mol Biol; 2011; 726():151-78. PubMed ID: 21424449 [TBL] [Abstract][Full Text] [Related]
28. Asymmetrical flow field-flow fractionation with multi-angle light scattering and quasi elastic light scattering for characterization of poly(ethyleneglycol-b-ɛ-caprolactone) block copolymer self-assemblies used as drug carriers for photodynamic therapy. Ehrhart J; Mingotaud AF; Violleau F J Chromatogr A; 2011 Jul; 1218(27):4249-56. PubMed ID: 21300359 [TBL] [Abstract][Full Text] [Related]
30. Nanoparticles as vehicles for delivery of photodynamic therapy agents. Bechet D; Couleaud P; Frochot C; Viriot ML; Guillemin F; Barberi-Heyob M Trends Biotechnol; 2008 Nov; 26(11):612-21. PubMed ID: 18804298 [TBL] [Abstract][Full Text] [Related]
31. In vitro photodynamic effect of aluminum tetrasulfophthalocyanines on melanoma skin cancer and healthy normal skin cells. Maduray K; Odhav B; Nyokong T Photodiagnosis Photodyn Ther; 2012 Mar; 9(1):32-9. PubMed ID: 22369726 [TBL] [Abstract][Full Text] [Related]
32. Targeted intracellular delivery of photosensitizers to enhance photodynamic efficiency. Rosenkranz AA; Jans DA; Sobolev AS Immunol Cell Biol; 2000 Aug; 78(4):452-64. PubMed ID: 10947873 [TBL] [Abstract][Full Text] [Related]
33. Ceramic-based nanoparticles entrapping water-insoluble photosensitizing anticancer drugs: a novel drug-carrier system for photodynamic therapy. Roy I; Ohulchanskyy TY; Pudavar HE; Bergey EJ; Oseroff AR; Morgan J; Dougherty TJ; Prasad PN J Am Chem Soc; 2003 Jul; 125(26):7860-5. PubMed ID: 12823004 [TBL] [Abstract][Full Text] [Related]
34. Tailor-made approach to photodynamic therapy in the treatment of cancer based on Bcl-2 photodamage. Usuda J; Hirata T; Ichinose S; Ishizumi T; Inoue T; Ohtani K; Maehara S; Yamada M; Tsutsui H; Okunaka T; Kato H; Ikeda N Int J Oncol; 2008 Oct; 33(4):689-96. PubMed ID: 18813781 [TBL] [Abstract][Full Text] [Related]
35. Antitumor effect of 5-aminolevulinic acid-mediated photodynamic therapy can be enhanced by the use of a low dose of photofrin in human tumor xenografts. Peng Q; Warloe T; Moan J; Godal A; Apricena F; Giercksky KE; Nesland JM Cancer Res; 2001 Aug; 61(15):5824-32. PubMed ID: 11479222 [TBL] [Abstract][Full Text] [Related]
36. Structural effect and mechanism of C70-carboxyfullerenes as efficient sensitizers against cancer cells. Liu Q; Guan M; Xu L; Shu C; Jin C; Zheng J; Fang X; Yang Y; Wang C Small; 2012 Jul; 8(13):2070-7. PubMed ID: 22508680 [TBL] [Abstract][Full Text] [Related]
37. Nanotechology-based strategies to enhance the efficacy of photodynamic therapy for cancers. Li WT Curr Drug Metab; 2009 Oct; 10(8):851-60. PubMed ID: 20214580 [TBL] [Abstract][Full Text] [Related]
38. Inorganic nanoparticles for enhanced photodynamic cancer therapy. Cheng SH; Lo LW Curr Drug Discov Technol; 2011 Sep; 8(3):250-68. PubMed ID: 21644924 [TBL] [Abstract][Full Text] [Related]
39. Mechanisms of action of phenanthroperylenequinones in photodynamic therapy (review). Ali SM; Olivo M Int J Oncol; 2003 Jun; 22(6):1181-91. PubMed ID: 12738982 [TBL] [Abstract][Full Text] [Related]
40. Photodynamic therapy of tumors with pyropheophorbide- Liu H; Zhao M; Wang J; Pang M; Wu Z; Zhao L; Yin Z; Hong Z Int J Nanomedicine; 2016; 11():4905-4918. PubMed ID: 27729788 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]