These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

73 related articles for article (PubMed ID: 22560717)

  • 1. Minimal predicted distance: a common metric for collision avoidance during pairwise interactions between walkers.
    Olivier AH; Marin A; Crétual A; Pettré J
    Gait Posture; 2012 Jul; 36(3):399-404. PubMed ID: 22560717
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Minimum predicted distance: Applying a common metric to collision avoidance strategies between children and adult walkers.
    Rapos V; Cinelli M; Snyder N; Crétual A; Olivier AH
    Gait Posture; 2019 Jul; 72():16-21. PubMed ID: 31132592
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Collision avoidance between two walkers: role-dependent strategies.
    Olivier AH; Marin A; Crétual A; Berthoz A; Pettré J
    Gait Posture; 2013 Sep; 38(4):751-6. PubMed ID: 23665066
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Collision Avoidance With Multiple Walkers: Sequential or Simultaneous Interactions?
    Meerhoff LA; Pettré J; Lynch SD; Crétual A; Olivier AH
    Front Psychol; 2018; 9():2354. PubMed ID: 30555380
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of path curvature on collision avoidance behaviour between two walkers.
    Lynch SD; Kulpa R; Meerhoff LA; Sorel A; Pettré J; Olivier AH
    Exp Brain Res; 2021 Jan; 239(1):329-340. PubMed ID: 33175191
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Collision avoidance behaviours between older adult and young adult walkers.
    Rapos V; Cinelli ME; Grunberg R; Bourgaize S; Crétual A; Olivier AH
    Gait Posture; 2021 Jul; 88():210-215. PubMed ID: 34118745
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Walking through an aperture with visual information obtained at a distance.
    Muroi D; Higuchi T
    Exp Brain Res; 2017 Jan; 235(1):219-230. PubMed ID: 27687556
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Minimal predicted distance: a kinematic cue to investigate collision avoidance between walkers.
    Olivier AH; Marin A; Crétual A; Pettré J
    Comput Methods Biomech Biomed Engin; 2012; 15 Suppl 1():240-2. PubMed ID: 23009493
    [No Abstract]   [Full Text] [Related]  

  • 9. Walking there: environmental influence on walking-distance estimation.
    Iosa M; Fusco A; Morone G; Paolucci S
    Behav Brain Res; 2012 Jan; 226(1):124-32. PubMed ID: 21925542
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Locomotor avoidance behaviours during a visually guided task involving an approaching object.
    Cinelli ME; Patla AE
    Gait Posture; 2008 Nov; 28(4):596-601. PubMed ID: 18514525
    [TBL] [Abstract][Full Text] [Related]  

  • 11. How do walkers avoid a mobile robot crossing their way?
    Vassallo C; Olivier AH; Souères P; Crétual A; Stasse O; Pettré J
    Gait Posture; 2017 Jan; 51():97-103. PubMed ID: 27744251
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The neural correlates of impaired collision avoidance in hemianopic patients.
    Papageorgiou E; Hardiess G; Wiethölter H; Ackermann H; Dietz K; Mallot HA; Schiefer U
    Acta Ophthalmol; 2012 May; 90(3):e198-205. PubMed ID: 22176680
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Task-specific modulations of locomotor action parameters based on on-line visual information during collision avoidance with moving objects.
    Cinelli ME; Patla AE
    Hum Mov Sci; 2008 Jun; 27(3):513-31. PubMed ID: 18234382
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How do walkers behave when crossing the way of a mobile robot that replicates human interaction rules?
    Vassallo C; Olivier AH; Souères P; Crétual A; Stasse O; Pettré J
    Gait Posture; 2018 Feb; 60():188-193. PubMed ID: 29248849
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Collision avoidance in persons with homonymous visual field defects under virtual reality conditions.
    Papageorgiou E; Hardiess G; Ackermann H; Wiethoelter H; Dietz K; Mallot HA; Schiefer U
    Vision Res; 2012 Jan; 52(1):20-30. PubMed ID: 22100816
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detection of the relevant type of locomotion in infancy: crawlers versus walkers.
    Sanefuji W; Ohgami H; Hashiya K
    Infant Behav Dev; 2008 Dec; 31(4):624-8. PubMed ID: 18771803
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Timing and distance characteristics of interpersonal coordination during locomotion.
    Ducourant T; Vieilledent S; Kerlirzin Y; Berthoz A
    Neurosci Lett; 2005 Nov; 389(1):6-11. PubMed ID: 16095821
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Walking with Virtual People: Evaluation of Locomotion Interfaces in Dynamic Environments.
    Olivier AH; Bruneau J; Kulpa R; Pettre J
    IEEE Trans Vis Comput Graph; 2018 Jul; 24(7):2251-2263. PubMed ID: 28613177
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Collision avoidance: a helicopter simulator study.
    Kruk R; Regan D
    Aviat Space Environ Med; 1996 Feb; 67(2):111-14. PubMed ID: 8834934
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of aging on biological motion discrimination.
    Pilz KS; Bennett PJ; Sekuler AB
    Vision Res; 2010 Jan; 50(2):211-9. PubMed ID: 19941881
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.