These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 22560977)

  • 1. Decomposition of 2,2',4,4',5,5'-hexachlorobiphenyl with iron supported on an activated carbon from an ion-exchange resin.
    Sun Y; Takaoka M; Takeda N; Wang W; Zeng X; Zhu T
    Chemosphere; 2012 Aug; 88(7):895-902. PubMed ID: 22560977
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetics on the decomposition of polychlorinated biphenyls with activated carbon-supported iron.
    Sun Y; Takaoka M; Takeda N; Matsumoto T; Oshita K
    Chemosphere; 2006 Oct; 65(2):183-9. PubMed ID: 16630644
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of activated-carbon-supported transition metals on the decomposition of polychlorobiphenyls. Part I: Catalytic decomposition and kinetic analysis.
    Sun Y; Tao F; Liu L; Zeng X; Wang W
    Chemosphere; 2016 Sep; 159():659-667. PubMed ID: 27178638
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of activated-carbon-supported transition metals on the decomposition of polychlorobiphenyls. Part II: Chemical and physical characterization and mechanistic study.
    Sun Y; Liu L; Oshita K; Zeng X; Wang W; Zhang Y
    Chemosphere; 2016 Sep; 159():668-675. PubMed ID: 27320438
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physicochemical characteristics of carbonaceous adsorbent for dioxin-like polychlorinated biphenyl adsorption.
    Kawashima A; Katayama M; Matsumoto N; Honda K
    Chemosphere; 2011 Apr; 83(6):823-30. PubMed ID: 21435691
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dechlorination of polychlorinated biphenyls by iron and its oxides.
    Sun Y; Liu X; Kainuma M; Wang W; Takaoka M; Takeda N
    Chemosphere; 2015 Oct; 137():78-86. PubMed ID: 26011415
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PCB decomposition and formation in thermal treatment plant equipment.
    Ishikawa Y; Noma Y; Yamamoto T; Mori Y; Sakai S
    Chemosphere; 2007 Apr; 67(7):1383-93. PubMed ID: 17134732
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In situ adsorption-catalysis system for the removal of o-xylene over an activated carbon supported Pd catalyst.
    Huang S; Zhang C; He H
    J Environ Sci (China); 2009; 21(7):985-90. PubMed ID: 19862967
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adsorptive selenite removal from water using iron-coated GAC adsorbents.
    Zhang N; Lin LS; Gang D
    Water Res; 2008 Aug; 42(14):3809-16. PubMed ID: 18694584
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation of activated carbon with large specific surface area from reed black liquor.
    Sun Y; Zhang JP; Yang G; Li ZH
    Environ Technol; 2007 May; 28(5):491-7. PubMed ID: 17615958
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetics and reaction pathway of Aroclor 1254 removal by novel bimetallic catalysts supported on activated carbon.
    Xu J; Liu Y; Tao F; Sun Y
    Sci Total Environ; 2019 Feb; 651(Pt 1):749-755. PubMed ID: 30245430
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of physicochemical treatments on iron-based spent catalyst for catalytic oxidation of toluene.
    Kim SC; Shim WG
    J Hazard Mater; 2008 Jun; 154(1-3):310-6. PubMed ID: 18035484
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Remediation of PCB contaminated soils using iron nano-particles.
    Varanasi P; Fullana A; Sidhu S
    Chemosphere; 2007 Jan; 66(6):1031-8. PubMed ID: 16962632
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regeneration of spent powdered activated carbon saturated with inorganic ions by cavitation united with ion exchange method.
    Li G; Gao H; Li Y; Yang H
    J Environ Sci (China); 2011 Jun; 23 Suppl():S146-8. PubMed ID: 25084579
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamics of PCB removal and detoxification in historically contaminated soils amended with activated carbon.
    Vasilyeva GK; Strijakova ER; Nikolaeva SN; Lebedev AT; Shea PJ
    Environ Pollut; 2010 Mar; 158(3):770-7. PubMed ID: 19897290
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of Fe loadings on desulfurization performance of activated carbon treated by nitric acid.
    Guo JX; Shu S; Liu XL; Wang XJ; Yin HQ; Chu YH
    Environ Technol; 2017 Feb; 38(3):266-276. PubMed ID: 27189116
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Utilization of Arachis hypogaea hull, an agricultural waste for the production of activated carbons to remove phenol from aqueous solutions.
    Mohanty K; Das D; Biswas MN
    J Environ Sci Health B; 2008 Jun; 43(5):452-63. PubMed ID: 18576227
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Removal of arsenic from water by supported nano zero-valent iron on activated carbon.
    Zhu H; Jia Y; Wu X; Wang H
    J Hazard Mater; 2009 Dec; 172(2-3):1591-6. PubMed ID: 19733972
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Investigation of inorganic sulfur decomposition in a coal-like environment during pyrolysis].
    Xu L; Ni JR
    Huan Jing Ke Xue; 2005 Mar; 26(2):69-73. PubMed ID: 16004302
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adsorption of polychlorinated biphenyls to activated carbon: equilibrium isotherms and a preliminary assessment of the effect of dissolved organic matter and biofilm loadings.
    McDonough KM; Fairey JL; Lowry GV
    Water Res; 2008 Feb; 42(3):575-84. PubMed ID: 17761210
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.