BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 22561204)

  • 1. Pig lenses in a lens stretcher: implications for presbyopia treatment.
    Kammel R; Ackermann R; Mai T; Damm C; Nolte S
    Optom Vis Sci; 2012 Jun; 89(6):908-15. PubMed ID: 22561204
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of the behavior of natural and refilled porcine lenses in a robotic lens stretcher.
    Reilly MA; Hamilton PD; Perry G; Ravi N
    Exp Eye Res; 2009 Mar; 88(3):483-94. PubMed ID: 19041865
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relation between injected volume and optical parameters in refilled isolated porcine lenses.
    Koopmans SA; Terwee T; Haitjema HJ; Deuring H; Aarle S; Kooijman AC
    Ophthalmic Physiol Opt; 2004 Nov; 24(6):572-9. PubMed ID: 15491485
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measurement of Ex Vivo Porcine Lens Shape During Simulated Accommodation, Before and After fs-Laser Treatment.
    Hahn J; Fromm M; Al Halabi F; Besdo S; Lubatschowski H; Ripken T; Krüger A
    Invest Ophthalmol Vis Sci; 2015 Aug; 56(9):5332-43. PubMed ID: 26275131
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Femtosecond laser induced flexibility change of human donor lenses.
    Schumacher S; Oberheide U; Fromm M; Ripken T; Ertmer W; Gerten G; Wegener A; Lubatschowski H
    Vision Res; 2009 Jul; 49(14):1853-9. PubMed ID: 19427880
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Presbyopia treatment using a femtosecond laser].
    Blum M; Kunert K; Nolte S; Riehemann S; Palme M; Peschel T; Dick M; Dick HB
    Ophthalmologe; 2006 Dec; 103(12):1014-9. PubMed ID: 17111185
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Refractive lens exchange for presbyopia.
    Kashani S; Mearza AA; Claoué C
    Cont Lens Anterior Eye; 2008 Jun; 31(3):117-21. PubMed ID: 18406656
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Presbyopia and the optical changes in the human crystalline lens with age.
    Glasser A; Campbell MC
    Vision Res; 1998 Jan; 38(2):209-29. PubMed ID: 9536350
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein Disulfide Levels and Lens Elasticity Modulation: Applications for Presbyopia.
    Garner WH; Garner MH
    Invest Ophthalmol Vis Sci; 2016 May; 57(6):2851-63. PubMed ID: 27233034
    [TBL] [Abstract][Full Text] [Related]  

  • 10. fs-Laser induced elasticity changes to improve presbyopic lens accommodation.
    Ripken T; Oberheide U; Fromm M; Schumacher S; Gerten G; Lubatschowski H
    Graefes Arch Clin Exp Ophthalmol; 2008 Jun; 246(6):897-906. PubMed ID: 18030488
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Femtosecond laser photodisruption of the crystalline lens for restoring accommodation.
    Reggiani Mello GH; Krueger RR
    Int Ophthalmol Clin; 2011; 51(2):87-95. PubMed ID: 21383582
    [No Abstract]   [Full Text] [Related]  

  • 12. Model of accommodation: contributions of lens geometry and mechanical properties to the development of presbyopia.
    Van de Sompel D; Kunkel GJ; Hersh PS; Smits AJ
    J Cataract Refract Surg; 2010 Nov; 36(11):1960-71. PubMed ID: 21029906
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Change in shape of the aging human crystalline lens with accommodation.
    Dubbelman M; Van der Heijde GL; Weeber HA
    Vision Res; 2005 Jan; 45(1):117-32. PubMed ID: 15571742
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polymer refilling of presbyopic human lenses in vitro restores the ability to undergo accommodative changes.
    Koopmans SA; Terwee T; Barkhof J; Haitjema HJ; Kooijman AC
    Invest Ophthalmol Vis Sci; 2003 Jan; 44(1):250-7. PubMed ID: 12506082
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cause and treatment of presbyopia with a method for increasing the amplitude of accommodation.
    Schachar RA
    Ann Ophthalmol; 1992 Dec; 24(12):445-7, 452. PubMed ID: 1485739
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Age-dependent loss of accommodative amplitude in rhesus monkeys: an animal model for presbyopia.
    Bito LZ; DeRousseau CJ; Kaufman PL; Bito JW
    Invest Ophthalmol Vis Sci; 1982 Jul; 23(1):23-31. PubMed ID: 7085219
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A quantitative geometric mechanics lens model: insights into the mechanisms of accommodation and presbyopia.
    Reilly MA
    Vision Res; 2014 Oct; 103():20-31. PubMed ID: 25130408
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changes in spherical aberration after lens refilling with a silicone oil.
    Wong KH; Koopmans SA; Terwee T; Kooijman AC
    Invest Ophthalmol Vis Sci; 2007 Mar; 48(3):1261-7. PubMed ID: 17325171
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Finite element modelling of radial lentotomy cuts to improve the accommodation performance of the human lens.
    Burd HJ; Wilde GS
    Graefes Arch Clin Exp Ophthalmol; 2016 Apr; 254(4):727-37. PubMed ID: 26916782
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neuroadaptation of presbyopia-correcting intraocular lenses.
    Pepin SM
    Curr Opin Ophthalmol; 2008 Jan; 19(1):10-2. PubMed ID: 18090890
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.