These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 22561207)

  • 1. Ultrasonography and optical low-coherence interferometry compared in the chicken eye.
    Penha AM; Burkhardt E; Schaeffel F; Feldkaemper MP
    Optom Vis Sci; 2012 Jun; 89(6):916-21. PubMed ID: 22561207
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of A-Scan ultrasonography and the Lenstar optical biometer in Guinea pig eyes.
    Wang Q; Ji X; Lu D; Zhu Y; Whelchel A; Wang J; Zhang H; Dong L; Wei R
    Exp Eye Res; 2021 Jun; 207():108578. PubMed ID: 33864786
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lenstar versus ultrasound for ocular biometry in a pediatric population.
    Gursoy H; Sahin A; Basmak H; Ozer A; Yildirim N; Colak E
    Optom Vis Sci; 2011 Aug; 88(8):912-9. PubMed ID: 21552178
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of measurement differences of anterior chamber depth and axial length on lens thickness evaluation in cataract patients: a comparison of two tests.
    Xu J; Li C; Wang L; Li C; Li X; Lu P
    BMC Ophthalmol; 2020 Dec; 20(1):481. PubMed ID: 33287752
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multicenter study of optical low-coherence interferometry and partial-coherence interferometry optical biometers with patients from the United States and China.
    Hoffer KJ; Shammas HJ; Savini G; Huang J
    J Cataract Refract Surg; 2016 Jan; 42(1):62-7. PubMed ID: 26948779
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Correlation of vitreous chamber depth with ocular biometry in high axial myopia.
    Paritala A; Takkar B; Gaur N; Soni D; Ali MH; Rathi A
    Indian J Ophthalmol; 2022 Mar; 70(3):914-920. PubMed ID: 35225543
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vivo biometry in the mouse eye with low coherence interferometry.
    Schmucker C; Schaeffel F
    Vision Res; 2004; 44(21):2445-56. PubMed ID: 15358080
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative analysis of optical biometers.
    Sabatino F; Findl O; Maurino V
    J Cataract Refract Surg; 2016 May; 42(5):685-93. PubMed ID: 27255244
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of the vitreous chamber depth: An assessment of correlation with ocular biometrics.
    Takkar B; Gaur N; Saluja G; Rathi A; Sharma B; Venkatesh P; Kumar A
    Indian J Ophthalmol; 2019 Oct; 67(10):1645-1649. PubMed ID: 31546500
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Refractive error, ocular biometry, and lens opalescence in an adult population: the Los Angeles Latino Eye Study.
    Shufelt C; Fraser-Bell S; Ying-Lai M; Torres M; Varma R;
    Invest Ophthalmol Vis Sci; 2005 Dec; 46(12):4450-60. PubMed ID: 16303933
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The development of the refractive status and ocular growth in C57BL/6 mice.
    Zhou X; Shen M; Xie J; Wang J; Jiang L; Pan M; Qu J; Lu F
    Invest Ophthalmol Vis Sci; 2008 Dec; 49(12):5208-14. PubMed ID: 18689702
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of the new biometer OA-1000 with IOLMaster and Tomey AL-3000.
    Goebels SC; Seitz B; Langenbucher A
    Curr Eye Res; 2013 Sep; 38(9):910-6. PubMed ID: 23841799
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of partial coherence interferometry and ultrasound for anterior segment biometry.
    Lara F; Fernández-Sánchez V; López-Gil N; Cerviño A; Montés-Micó R
    J Cataract Refract Surg; 2009 Feb; 35(2):324-9. PubMed ID: 19185250
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Repeatability and reproducibility of ocular biometry using a new noncontact optical low-coherence interferometer.
    Huang J; Savini G; Wu F; Yu X; Yang J; Yu A; Yu Y; Wang Q
    J Cataract Refract Surg; 2015 Oct; 41(10):2233-41. PubMed ID: 26703300
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The correlation of differences in the ocular component values with the degree of myopic anisometropia.
    Kim SY; Cho SY; Yang JW; Kim CS; Lee YC
    Korean J Ophthalmol; 2013 Feb; 27(1):44-7. PubMed ID: 23372379
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An evaluation of the IOLMaster 700 and its agreement with the IOLMaster v3 in children.
    Leighton RE; Breslin KM; Saunders KJ; McCullough SJ
    Ophthalmic Physiol Opt; 2022 Jan; 42(1):48-58. PubMed ID: 34761427
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Correlation between refraction and ocular biometry].
    Touzeau O; Allouch C; Borderie V; Kopito R; Laroche L
    J Fr Ophtalmol; 2003 Apr; 26(4):355-63. PubMed ID: 12843892
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparision of Optical Low Coherence Reflectometry Versus Ultrasonic Biometry in High Hypermetropia.
    Aydin R; Karaman Erdur S; Serefoglu Cabuk K; Karahan E; Kaynak S
    Eye Contact Lens; 2018 Sep; 44 Suppl 1():S115-S117. PubMed ID: 27898517
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biometric measurements in highly myopic eyes.
    Shen P; Zheng Y; Ding X; Liu B; Congdon N; Morgan I; He M
    J Cataract Refract Surg; 2013 Feb; 39(2):180-7. PubMed ID: 23228592
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ocular biometry through fully refocused steady-state magnetic resonance imaging sequence: reliability and agreement with the IOLMaster
    Perez-Sanchez LI; Gutierrez-Vazquez J; Satrustegui-Lapetra M; Ferreira-Manuel F; Arevalo-Manso JJ; Gomez-Herrera JJ; Criado-Alvarez JJ
    Int Ophthalmol; 2021 May; 41(5):1863-1874. PubMed ID: 33619690
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.