BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 22561251)

  • 1. Low-modulus PMMA bone cement modified with castor oil.
    López A; Hoess A; Thersleff T; Ott M; Engqvist H; Persson C
    Biomed Mater Eng; 2011; 21(5-6):323-32. PubMed ID: 22561251
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bone marrow modified acrylic bone cement for augmentation of osteoporotic cancellous bone.
    Arens D; Rothstock S; Windolf M; Boger A
    J Mech Behav Biomed Mater; 2011 Nov; 4(8):2081-9. PubMed ID: 22098908
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modification of Mechanical Properties, Polymerization Temperature, and Handling Time of Polymethylmethacrylate Cement for Enhancing Applicability in Vertebroplasty.
    Tai CL; Lai PL; Lin WD; Tsai TT; Lee YC; Liu MY; Chen LH
    Biomed Res Int; 2016; 2016():7901562. PubMed ID: 27812530
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Variation of the mechanical properties of PMMA to suit osteoporotic cancellous bone.
    Boger A; Bisig A; Bohner M; Heini P; Schneider E
    J Biomater Sci Polym Ed; 2008; 19(9):1125-42. PubMed ID: 18727856
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Performance of vertebral cancellous bone augmented with compliant PMMA under dynamic loads.
    Boger A; Bohner M; Heini P; Schwieger K; Schneider E
    Acta Biomater; 2008 Nov; 4(6):1688-93. PubMed ID: 18678533
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NMP-modified PMMA bone cement with adapted mechanical and hardening properties for the use in cancellous bone augmentation.
    Boger A; Wheeler K; Montali A; Gruskin E
    J Biomed Mater Res B Appl Biomater; 2009 Aug; 90(2):760-6. PubMed ID: 19280644
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In Vitro and In Vivo Response to Low-Modulus PMMA-Based Bone Cement.
    Carlsson E; Mestres G; Treerattrakoon K; López A; Karlsson Ott M; Larsson S; Persson C
    Biomed Res Int; 2015; 2015():594284. PubMed ID: 26366415
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of oligo(trimethylene carbonate) addition on the stiffness of acrylic bone cement.
    Persson C; López A; Fathali H; Hoess A; Rojas R; Ott MK; Hilborn J; Engqvist H
    Biomatter; 2016; 6(1):e1133394. PubMed ID: 26727581
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reinforcement of bone cement using zirconia fibers with and without acrylic coating.
    Kotha S; Li C; Schmid S; Mason J
    J Biomed Mater Res A; 2009 Mar; 88(4):898-906. PubMed ID: 18384160
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct and interactive effects of three variables on properties of PMMA bone cement for vertebral body augmentation.
    López A; Unosson E; Engqvist H; Persson C
    J Mater Sci Mater Med; 2011 Jun; 22(6):1599-606. PubMed ID: 21526408
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Properties of an injectable low modulus PMMA bone cement for osteoporotic bone.
    Boger A; Bohner M; Heini P; Verrier S; Schneider E
    J Biomed Mater Res B Appl Biomater; 2008 Aug; 86(2):474-82. PubMed ID: 18288697
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of the particle release of porous PMMA cements during curing.
    Beck S; Boger A
    Acta Biomater; 2009 Sep; 5(7):2503-7. PubMed ID: 19409868
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of additive particles on mechanical, thermal, and cell functioning properties of poly(methyl methacrylate) cement.
    Khandaker M; Vaughan MB; Morris TL; White JJ; Meng Z
    Int J Nanomedicine; 2014; 9():2699-712. PubMed ID: 24920906
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physical and mechanical properties of PMMA bone cement reinforced with nano-sized titania fibers.
    Khaled SM; Charpentier PA; Rizkalla AS
    J Biomater Appl; 2011 Feb; 25(6):515-37. PubMed ID: 20207779
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In Vitro characterization of low modulus linoleic acid coated strontium-substituted hydroxyapatite containing PMMA bone cement.
    Lam WM; Pan HB; Fong MK; Cheung WS; Wong KL; Li ZY; Luk KD; Chan WK; Wong CT; Yang C; Lu WW
    J Biomed Mater Res B Appl Biomater; 2011 Jan; 96(1):76-83. PubMed ID: 21053263
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The characteristics of a hydroxyapatite-chitosan-PMMA bone cement.
    Kim SB; Kim YJ; Yoon TL; Park SA; Cho IH; Kim EJ; Kim IA; Shin JW
    Biomaterials; 2004 Nov; 25(26):5715-23. PubMed ID: 15147817
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of biomedical porous titanium filled with medical polymer by in-situ polymerization of monomer solution infiltrated into pores.
    Nakai M; Niinomi M; Akahori T; Tsutsumi H; Itsuno S; Haraguchi N; Itoh Y; Ogasawara T; Onishi T; Shindoh T
    J Mech Behav Biomed Mater; 2010 Jan; 3(1):41-50. PubMed ID: 19878901
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The mechanical behavior of PMMA/bone specimens extracted from augmented vertebrae: a numerical study of interface properties, PMMA shrinkage and trabecular bone damage.
    Kinzl M; Boger A; Zysset PK; Pahr DH
    J Biomech; 2012 May; 45(8):1478-84. PubMed ID: 22386105
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vertebroplasty by use of a strontium-containing bioactive bone cement.
    Cheung KM; Lu WW; Luk KD; Wong CT; Chan D; Shen JX; Qiu GX; Zheng ZM; Li CH; Liu SL; Chan WK; Leong JC
    Spine (Phila Pa 1976); 2005 Sep; 30(17 Suppl):S84-91. PubMed ID: 16138071
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of a novel radiopacifiying agent on the physical properties of surgical spineplex.
    O'Brien D; Boyd D; Madigan S; Murphy S
    J Mater Sci Mater Med; 2010 Jan; 21(1):53-8. PubMed ID: 19688251
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.