These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 22561251)
1. Low-modulus PMMA bone cement modified with castor oil. López A; Hoess A; Thersleff T; Ott M; Engqvist H; Persson C Biomed Mater Eng; 2011; 21(5-6):323-32. PubMed ID: 22561251 [TBL] [Abstract][Full Text] [Related]
2. Bone marrow modified acrylic bone cement for augmentation of osteoporotic cancellous bone. Arens D; Rothstock S; Windolf M; Boger A J Mech Behav Biomed Mater; 2011 Nov; 4(8):2081-9. PubMed ID: 22098908 [TBL] [Abstract][Full Text] [Related]
3. Modification of Mechanical Properties, Polymerization Temperature, and Handling Time of Polymethylmethacrylate Cement for Enhancing Applicability in Vertebroplasty. Tai CL; Lai PL; Lin WD; Tsai TT; Lee YC; Liu MY; Chen LH Biomed Res Int; 2016; 2016():7901562. PubMed ID: 27812530 [TBL] [Abstract][Full Text] [Related]
4. Variation of the mechanical properties of PMMA to suit osteoporotic cancellous bone. Boger A; Bisig A; Bohner M; Heini P; Schneider E J Biomater Sci Polym Ed; 2008; 19(9):1125-42. PubMed ID: 18727856 [TBL] [Abstract][Full Text] [Related]
5. Performance of vertebral cancellous bone augmented with compliant PMMA under dynamic loads. Boger A; Bohner M; Heini P; Schwieger K; Schneider E Acta Biomater; 2008 Nov; 4(6):1688-93. PubMed ID: 18678533 [TBL] [Abstract][Full Text] [Related]
6. NMP-modified PMMA bone cement with adapted mechanical and hardening properties for the use in cancellous bone augmentation. Boger A; Wheeler K; Montali A; Gruskin E J Biomed Mater Res B Appl Biomater; 2009 Aug; 90(2):760-6. PubMed ID: 19280644 [TBL] [Abstract][Full Text] [Related]
7. In Vitro and In Vivo Response to Low-Modulus PMMA-Based Bone Cement. Carlsson E; Mestres G; Treerattrakoon K; López A; Karlsson Ott M; Larsson S; Persson C Biomed Res Int; 2015; 2015():594284. PubMed ID: 26366415 [TBL] [Abstract][Full Text] [Related]
8. The effect of oligo(trimethylene carbonate) addition on the stiffness of acrylic bone cement. Persson C; López A; Fathali H; Hoess A; Rojas R; Ott MK; Hilborn J; Engqvist H Biomatter; 2016; 6(1):e1133394. PubMed ID: 26727581 [TBL] [Abstract][Full Text] [Related]
9. Reinforcement of bone cement using zirconia fibers with and without acrylic coating. Kotha S; Li C; Schmid S; Mason J J Biomed Mater Res A; 2009 Mar; 88(4):898-906. PubMed ID: 18384160 [TBL] [Abstract][Full Text] [Related]
10. Direct and interactive effects of three variables on properties of PMMA bone cement for vertebral body augmentation. López A; Unosson E; Engqvist H; Persson C J Mater Sci Mater Med; 2011 Jun; 22(6):1599-606. PubMed ID: 21526408 [TBL] [Abstract][Full Text] [Related]
11. Properties of an injectable low modulus PMMA bone cement for osteoporotic bone. Boger A; Bohner M; Heini P; Verrier S; Schneider E J Biomed Mater Res B Appl Biomater; 2008 Aug; 86(2):474-82. PubMed ID: 18288697 [TBL] [Abstract][Full Text] [Related]
12. Evaluation of the particle release of porous PMMA cements during curing. Beck S; Boger A Acta Biomater; 2009 Sep; 5(7):2503-7. PubMed ID: 19409868 [TBL] [Abstract][Full Text] [Related]
13. Effect of additive particles on mechanical, thermal, and cell functioning properties of poly(methyl methacrylate) cement. Khandaker M; Vaughan MB; Morris TL; White JJ; Meng Z Int J Nanomedicine; 2014; 9():2699-712. PubMed ID: 24920906 [TBL] [Abstract][Full Text] [Related]
14. Physical and mechanical properties of PMMA bone cement reinforced with nano-sized titania fibers. Khaled SM; Charpentier PA; Rizkalla AS J Biomater Appl; 2011 Feb; 25(6):515-37. PubMed ID: 20207779 [TBL] [Abstract][Full Text] [Related]
15. Mechanical characterization and cytocompatibility of linoleic acid modified bone cement for percutaneous cement discoplasty. Ghandour S; Hong L; Aramesh M; Persson C J Mech Behav Biomed Mater; 2024 Oct; 158():106662. PubMed ID: 39096682 [TBL] [Abstract][Full Text] [Related]
16. In Vitro characterization of low modulus linoleic acid coated strontium-substituted hydroxyapatite containing PMMA bone cement. Lam WM; Pan HB; Fong MK; Cheung WS; Wong KL; Li ZY; Luk KD; Chan WK; Wong CT; Yang C; Lu WW J Biomed Mater Res B Appl Biomater; 2011 Jan; 96(1):76-83. PubMed ID: 21053263 [TBL] [Abstract][Full Text] [Related]
17. The characteristics of a hydroxyapatite-chitosan-PMMA bone cement. Kim SB; Kim YJ; Yoon TL; Park SA; Cho IH; Kim EJ; Kim IA; Shin JW Biomaterials; 2004 Nov; 25(26):5715-23. PubMed ID: 15147817 [TBL] [Abstract][Full Text] [Related]
18. Development of biomedical porous titanium filled with medical polymer by in-situ polymerization of monomer solution infiltrated into pores. Nakai M; Niinomi M; Akahori T; Tsutsumi H; Itsuno S; Haraguchi N; Itoh Y; Ogasawara T; Onishi T; Shindoh T J Mech Behav Biomed Mater; 2010 Jan; 3(1):41-50. PubMed ID: 19878901 [TBL] [Abstract][Full Text] [Related]
19. The mechanical behavior of PMMA/bone specimens extracted from augmented vertebrae: a numerical study of interface properties, PMMA shrinkage and trabecular bone damage. Kinzl M; Boger A; Zysset PK; Pahr DH J Biomech; 2012 May; 45(8):1478-84. PubMed ID: 22386105 [TBL] [Abstract][Full Text] [Related]
20. Vertebroplasty by use of a strontium-containing bioactive bone cement. Cheung KM; Lu WW; Luk KD; Wong CT; Chan D; Shen JX; Qiu GX; Zheng ZM; Li CH; Liu SL; Chan WK; Leong JC Spine (Phila Pa 1976); 2005 Sep; 30(17 Suppl):S84-91. PubMed ID: 16138071 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]